Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scientists and engineers encounter considerable environmental and economic obstacles stemming from the depletion of crude oil or petroleum fossil fuel reservoirs. To mitigate this challenge, alternative solutions like bio-oil-modified binder derived from biomass have been innovated. This research aims to examine the feasibility of using bio-oil-modified binder obtained from cotton stalk waste as a modifier. Various mechanical and physical tests, including penetration, softening point, ductility, and dynamic shear rheometer tests, were conducted on asphalt binder incorporating 5% and 10% bio-oil-modified binder. Wheel tracker, four-point beam fatigue, and dynamic modulus tests were used to evaluate asphalt mixture performance, including rutting, fatigue, and dynamic stiffness. A rolling bottle test (RBT) and asphalt binder bond strength (BBS) were used to assess moisture susceptibility. A bio-oil-modified binder enhanced ductility and penetration characteristics while reducing the softening point. With the addition of a bio-oil-modified binder, stiffness was reduced in parameters such as complex shear modulus and phase angle. In fact, for both specimens containing 5% and 10% bio-oil-modified binder, statistically significant differences were observed among the measured samples. As a result of this reduced stiffness, the modified asphalt binder is more suitable for low-temperature applications. Additionally, 5.8% increased at 10% and 3.1% at 5% CS. Bio-oil-modified binder, compared to virgin mixtures, supports equal rut resistance. However, the RBT and BBS tests revealed that the addition of bio-oil-modified binder increased the susceptibility of conventional asphalt binder to moisture. The findings suggest that bio-oil-modified binder can enhance asphalt binder properties in low-temperature regions, but further research is needed to improve moisture resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169230 | PMC |
http://dx.doi.org/10.1038/s41598-024-62652-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!