Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research investigates the enhancement of CO adsorption capacity through the use of modified activated carbon (AC) with LiOH, focusing on operational conditions and adsorbent properties. Response Surface Methodology (RSM) is employed to optimize process parameters for maximizing CO adsorption capacity. The study considers temperature, pressure, LiOH concentration for modification, and adsorbent weight as independent variables across five levels. Analysis of Variance reveals that LiOH concentration, adsorbent quantity, pressure, and temperature significantly influence CO adsorption. Optimal values for temperature (30°C), pressure (9 bar), LiOH concentration (0.5 mol/L), and adsorbent weight (0.5 g) result in a maximal CO adsorption capacity of 154.90 mg/g. Equilibrium adsorption capacity is utilized for modeling, with the Freundlich model proving suitable for CO adsorption on LiOH-AC. Kinetic modeling indicates the second-order model's suitability for temperatures of 30 °C and 50 °C, while the Elovich model fits temperatures of 70 °C and 90 °C. Thermodynamic modeling at the optimized conditions (303 K and 6 bar) yields ∆H, ∆S, and ∆G values of adsorption as 12.258 kJ/mol, - 0.017 kJ/mol·K, and - 7.031 kJ/mol, respectively. Furthermore, structural considerations of AC are discussed alongside modeling and simulation, presenting the adsorption rate of CO and the binding energy index based on Density Functional Theory (DFT).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169378 | PMC |
http://dx.doi.org/10.1038/s41598-024-64503-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!