Our research focuses on enhancing the broadband absorption capability of organic solar cells (OSCs) by integrating plasmonic nanostructures made of Titanium nitride (TiN). Traditional OSCs face limitations in absorption efficiency due to their thickness, but incorporating plasmonic nanostructures can extend the path length of light within the active material, thereby improving optical efficiency. In our study, we explore the use of refractory plasmonics, a novel type of nanostructure, with TiN as an example of a refractory metal. TiN offers high-quality localized surface plasmon resonance in the visible spectrum and is cost-effective, readily available, and compatible with CMOS technology. We conducted detailed numerical simulations to optimize the design of nanostructured OSCs, considering various shapes and sizes of nanoparticles within the active layer (PM6Y6). Our investigation focused on different TiN plasmonic nanostructures such as nanospheres, nanocubes, and nanocylinders, analyzing their absorption spectra in a polymer environment. We assessed the impact of their incorporation on the absorbed power and short-circuit current (Jsc) of the organic solar cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169357 | PMC |
http://dx.doi.org/10.1038/s41598-024-63133-5 | DOI Listing |
J Chem Phys
January 2025
Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
Rapid advancements in nanotechnology have allowed for the characterization of single molecules by placing them in the vicinity of nanoplasmonic structures that are known to confine light to sub-molecular scales. In this study, we introduce a theoretical framework that captures higher-order effects, and we explore the limits of the standard description of a molecular emitter as a point-dipole. We particularly focus on the role played by the emitter chain length and electron conjugation.
View Article and Find Full Text PDFNano Lett
January 2025
Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFChem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!