AI Article Synopsis

  • * The study uses numerical simulations to explore how RBC dynamics affect Ca dynamics in a linear two-dimensional channel, highlighting that ATP concentration is influenced by RBC density, channel width, and flow strength.
  • * Findings indicate that higher RBC concentration increases peak Ca levels in ECs, stronger flow reduces the time to peak Ca concentration, and wider channels lead to higher peak amplitudes but quicker peak times, suggesting important implications for calcium signaling in blood vessels.

Article Abstract

Red blood cells (RBCs) exhibit an interesting response to hydrodynamic flow, releasing adenosine triphosphate (ATP). Subsequently, these liberated ATP molecules initiate a crucial interaction with endothelial cells (ECs), thereby setting off a cascade involving the release of calcium ions (Ca ). Ca exerts control over a plethora of cellular functions, and acts as a mediator for dilation and contraction of blood vessel walls. This study focuses on the relationship between RBC dynamics and Ca dynamics, based on numerical simulations under Poiseuille flow within a linear two-dimensional channel. It is found that the concentration of ATP depends upon a variety of factors, including RBC density, channel width, and the vigor of the flow. The results of our investigation reveals several features. Firstly, the peak amplitude of Ca per EC escalates in direct proportion to the augmentation of RBC concentration. Secondly, increasing the flow strength induces a reduction in the time taken to reach the peak of Ca concentration, under the condition of a constant channel width. Additionally, when flow strength remains constant, an increase in channel width corresponds to an elevation in calcium peak amplitude, coupled with a decrease in peak time. This implies that Ca signals should transition from relatively unconstrained channels to more confined pathways within real vascular networks. This notion gains support from our examination of calcium propagation in a linear channel. In this scenario, the localized Ca release initiates a propagating wave that gradually encompasses the entire channel. Notably, our computed propagation speed agrees with observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637182PMC
http://dx.doi.org/10.1038/s41598-024-63306-2DOI Listing

Publication Analysis

Top Keywords

channel width
12
red blood
8
blood cells
8
peak amplitude
8
flow strength
8
channel
6
flow
5
endothelial calcium
4
calcium dynamics
4
dynamics elicited
4

Similar Publications

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.

View Article and Find Full Text PDF

Polyurethane (PU) grouting materials are widely used in underground engineering rehabilitation, particularly in reinforcement and waterproofing engineering in deep-water environments. The long-term effect of complex underground environments can lead to nanochannel formation within PU, weakening its repair remediation effect. However, the permeation behavior and microscopic mechanisms of water molecules within PU nanochannels remain unclear.

View Article and Find Full Text PDF

Study of the Influence of Desert Sand-Mineral Admixture on the Abrasion Resistance of Concrete.

Materials (Basel)

January 2025

College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.

The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.

View Article and Find Full Text PDF

Characterizing Stream Condition with Benthic Macroinvertebrates in Southeastern Minnesota, USA: Agriculture, Channelization, and Karst Geology Impact Lotic Habitats and Communities.

Insects

January 2025

Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.

Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).

View Article and Find Full Text PDF

A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production.

Micromachines (Basel)

January 2025

School of Engineering, Deakin University, 75 Pigdons Rd., Waurn Ponds, Geelong, VIC 3216, Australia.

The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio () between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!