During natural behavior, an action often needs to be suddenly stopped in response to an unexpected sensory input-referred to as reactive stopping. Reactive stopping has been mostly investigated in humans, which led to hypotheses about the involvement of different brain structures, in particular the hyperdirect pathway. Here, we directly investigate the contribution and interaction of two key regions of the hyperdirect pathway, the orbitofrontal cortex (OFC) and subthalamic nucleus (STN), using dual-area, multielectrode recordings in male rats performing a stop-signal task. In this task, rats have to initiate movement to a go-signal, and occasionally stop their movement to the go-signal side after a stop-signal, presented at various stop-signal delays. Both the OFC and STN show near-simultaneous field potential reductions in the beta frequency range (12-30 Hz) compared with the period preceding the go-signal and the movement period. These transient reductions (∼200 ms) only happen during reactive stopping, which is when the stop-signal was received after action initiation, and are well timed after stop-signal onset and before the estimated time of stopping. Phase synchronization analysis also showed a transient attenuation of synchronization between the OFC and STN in the beta range during reactive stopping. The present results provide the first direct quantification of local neural oscillatory activity in the OFC and STN and interareal synchronization specifically timed during reactive stopping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308328 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0463-24.2024 | DOI Listing |
Epilepsia
January 2025
Epilepsy Unit, Hôpital Gui de Chauliac, Montpellier, France.
Contemporary studies report nonconvulsive status epilepticus (NCSE) in Creutzfeldt-Jakob disease (CJD), based on benzodiazepine (BZP)-responsive epileptiform discharges on the electroencephalogram (EEG), with the following false syllogism: (1) intravenous (IV) administration of BZPs usually suppress ictal activity in NCSE; (2) in CJD, periodic sharp wave complexes (PSWCs) are suppressed by IV BZPs; (3) therefore, these patients have NCSE. This is a simplistic and invalid conclusion, because authors of 20th-century science reports have clearly shown that IV BZPs, short-acting barbiturates, and drugs with no antiseizure effects, such as chloral hydrate and IV naloxone, suppress PSWCs, but patients fall asleep with no clinical improvement. In contrast, IV methylphenidate transiently improves both the EEG and clinical states.
View Article and Find Full Text PDFEur J Med Res
December 2024
Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
Background: Dexamethasone 6 mg in patients with severe COVID-19 has been shown to decrease mortality and morbidity. The effects of higher doses of corticosteroid, that would further increase anti-inflammatory effects, are uncertain. The objective of our study was to assess the effect of 20 mg dexamethasone vs.
View Article and Find Full Text PDFCancer Control
December 2024
Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal.
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells.
View Article and Find Full Text PDFPhys Med
December 2024
Physics Dep., Sapienza U. of Rome, p.le Aldo Moro, 2, 00185, Rome, Italy; INFN, Sec. of Rome, p.le Aldo Moro, 2, 00185, Rome, Italy.
Macromol Biosci
November 2024
National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
Existing methods for treating diabetic oral ulcers often fall short in clinical environments due to potential bacterial contamination, oxidative harm, and hindered angiogenesis throughout the healing process. Here, a hydrogel patch (HYG2) have been developed for local in situ application. HYG2 comprises oxidized pullulan, quaternized chitosan, and eumelanin nanoparticles derived from cuttlefish ink.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!