A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biological treatment of N-methylpyrrolidone, cyclopentanone, and diethylene glycol monobutyl ether distilled residues and their effects on nitrogen removal in a full-scale wastewater treatment plant. | LitMetric

Biological treatment of N-methylpyrrolidone, cyclopentanone, and diethylene glycol monobutyl ether distilled residues and their effects on nitrogen removal in a full-scale wastewater treatment plant.

Chemosphere

Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan. Electronic address:

Published: August 2024

Manufacturing processes in semiconductor and photonics industries involve the use of a significant amount of organic solvents. Recycle and reuse of these solvents produce distillate residues and require treatment before being discharged. This study aimed to evaluate the performance of the biological treatment system in a full-scale wastewater treatment plant that treats wastewater containing distillate residues from the recycling of electronic chemicals. Batch experiments were conducted to investigate the optimal operational conditions for the full-scale wastewater treatment plant. To achieve good nitrogen removal efficiency with effluent ammonia and nitrate concentrations below 20 mg N/L and 50 mg N/L, respectively, it was suggested to control the ammonia concentration and pH of the influent below 500 mg N/L and 8.0, respectively. In addition, the biodegradability of N-methylpyrrolidone, diethylene glycol monobutyl ether, and cyclopentanone distillate residues from the electronic chemicals manufacturing process were evaluated under aerobic, anoxic, and anaerobic conditions. N-methylpyrrolidone and cyclopentanone distillate residues were suggested to be treated under anoxic condition. However, substrate inhibition occurred when using cyclopentanone distillate residue as a carbon source with chemical oxygen demand (COD) levels higher than 866 mg/L and nitrate levels higher than 415 mg N/L. Under aerobic condition, the COD from both N-methylpyrrolidone and cyclopentanone distillate residues could be easily degraded. Nevertheless, a negative effect on nitrification was observed, with a prolonged lag time for ammonia oxidation as the initial COD concentration increased. The specific ammonia oxidation rate and nitrate production rate decreased under high COD concentration contributed by N-methylpyrrolidone and cyclopentanone distillate residues. Furthermore, the biodegradability of diethylene glycol monobutyl ether distillate residue was found to be low under aerobic, anoxic, and anaerobic conditions. With respect to the abundance of nitrogen removal microorganisms in the wastewater treatment plant, results showed that Comammox may have an advantage over ammonia oxidizing bacteria under high pH conditions. In addition, Comammox may have higher resistance to environmental changes. Dominance of Comammox over ammonia oxidizing bacteria under high ammonia condition was first reported in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142585DOI Listing

Publication Analysis

Top Keywords

distillate residues
24
cyclopentanone distillate
20
n-methylpyrrolidone cyclopentanone
16
wastewater treatment
16
treatment plant
16
diethylene glycol
12
glycol monobutyl
12
monobutyl ether
12
nitrogen removal
12
full-scale wastewater
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!