Background: A critical challenge in the study and management of major depressive disorder (MDD) is predicting relapse. We examined the temporal correlation/coupling between depression and anxiety (called Depression-Anxiety Coupling Strength, DACS) as a predictor of relapse in patients with MDD.

Methods: We followed 97 patients with remitted MDD for an average of 394 days. Patients completed weekly self-ratings of depression and anxiety symptoms using the Quick Inventory of Depressive Symptoms (QIDS-SR) and the Generalized Anxiety Disorder 7-item scale (GAD-7). Using these longitudinal ratings we computed DACS as random slopes in a linear mixed effects model reflecting individual-specific degree of correlation between depression and anxiety across time points. We then tested DACS as an independent variable in a Cox proportional hazards model to predict relapse.

Results: A total of 28 patients (29 %) relapsed during the follow-up period. DACS significantly predicted confirmed relapse (hazard ratio [HR] 1.5, 95 % CI [1.01, 2.22], p = 0.043; Concordance 0.79 [SE 0.04]). This effect was independent of baseline depressive or anxiety symptoms or their average levels over the follow-up period, and was identifiable more than one month before relapse onset.

Limitations: Small sample size, in a single study. Narrow phenotype and comorbidity profiles.

Conclusions: DACS may offer opportunities for developing novel strategies for personalized monitoring, early detection, and intervention. Future studies should replicate our findings in larger, diverse patient populations, develop individual patient prediction models, and explore the underlying mechanisms that govern the relationship of DACS and relapse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2024.06.023DOI Listing

Publication Analysis

Top Keywords

depression anxiety
12
depression-anxiety coupling
8
coupling strength
8
predictor relapse
8
major depressive
8
depressive disorder
8
anxiety symptoms
8
follow-up period
8
relapse
6
dacs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!