Activation of the SST-SSTR5 signaling pathway enhances corneal wound healing in diabetic mice.

Mucosal Immunol

International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China. Electronic address:

Published: October 2024

Corneal wound healing in diabetic patients is usually delayed and accompanied by excessive inflammation. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we found that somatostatin (SST), an immunosuppressive peptide produced by corneal nerve fibers, was significantly reduced in streptozotocin-induced diabetic mice. In addition, we discovered that topical administration of exogenous SST significantly improved re-epithelialization and nerve regeneration following diabetic corneal epithelial abrasion. Further analysis showed that topical SST significantly reduced the expression of injury inflammation-related genes, inhibited neutrophil infiltration, and shifted macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 in diabetic corneas' healing. Moreover, the application of L-817,818, an agonist of the SST receptor type 5 subtype, significantly reduced the inflammatory response following epithelial injury and markedly improved the process of re-epithelialization and nerve regeneration in mice. Taken together, these data suggest that activation of the SST-SST receptor type 5 pathway significantly ameliorates diabetes-induced abnormalities in corneal wound repair in mice. Targeting this pathway may provide a novel strategy to restore impaired corneal wound closure and nerve regeneration in diabetic patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mucimm.2024.06.002DOI Listing

Publication Analysis

Top Keywords

corneal wound
16
nerve regeneration
12
wound healing
8
healing diabetic
8
diabetic mice
8
diabetic patients
8
re-epithelialization nerve
8
regeneration diabetic
8
receptor type
8
corneal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!