Circular RNAs in tuberculosis and lung cancer.

Clin Chim Acta

Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China. Electronic address:

Published: July 2024

This review signifies the role of circular RNAs (circRNAs) in tuberculosis (TB) and lung cancer (LC), focusing on pathogenesis, diagnosis, and treatment. CircRNAs, a newly discovered type of non-coding RNA, have emerged as key regulators of gene expression and promising biomarkers in various bodily fluids due to their stability. The current review discusses circRNA biogenesis, highlighting their RNase-R resistance due to their loop forming structure, making them effective biomarkers. It details their roles in gene regulation, including splicing, transcription control, and miRNA interactions, and their impact on cellular processes and diseases. For LC, the review identifies circRNA dysregulation affecting cell growth, motility, and survival, and their potential as therapeutic targets and biomarkers. In TB, it addresses circRNAs' influence on host anti-TB immune responses, proposing their use as early diagnostic markers. The paper also explores the interplay between TB and LC, emphasizing circRNAs as dual biosignatures, and the necessity for differential diagnosis. It concludes that no single circRNA biomarker is universally applicable for both TB and LC. Ultimately, the review highlights the pivotal role of circRNAs in TB and LC, encouraging further research in biomarker identification and therapeutic development concomitant for both diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2024.119810DOI Listing

Publication Analysis

Top Keywords

circular rnas
8
tuberculosis lung
8
lung cancer
8
rnas tuberculosis
4
review
4
cancer review
4
review signifies
4
signifies role
4
role circular
4
circrnas
4

Similar Publications

We present the complete mitochondrial genome of from China. The mitogenome of is circular, AT-rich (75.3%), and 15,898 bp in length.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!