Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. Here, we characterize the tumor microenvironment of LMD and patient-matched extra-cranial metastases using spatial transcriptomics in a small number of clinical specimens (nine tissues from two patients) with extensive in vitro and in vivo validation. The spatial landscape of melanoma LMD is characterized by a lack of immune infiltration and instead exhibits a higher level of stromal involvement. The tumor-stroma interactions at the leptomeninges activate tumor-promoting signaling, mediated through upregulation of SERPINA3. The meningeal stroma is required for melanoma cells to survive in the cerebrospinal fluid (CSF) and promotes MAPK inhibitor resistance. Knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in tumor cell death and re-sensitization to MAPK-targeting therapy. Our data provide a spatial atlas of melanoma LMD, identify the tumor-promoting role of meningeal stroma, and demonstrate a mechanism for overcoming microenvironment-mediated drug resistance in LMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228800PMC
http://dx.doi.org/10.1016/j.xcrm.2024.101606DOI Listing

Publication Analysis

Top Keywords

meningeal stroma
12
spatial transcriptomics
8
leptomeningeal disease
8
melanoma lmd
8
melanoma
5
lmd
5
spatial
4
transcriptomics analysis
4
analysis identifies
4
identifies tumor-promoting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!