g-CN modified natural low-grade dolomite-palygorskite: Removal capacity and adsorption mechanism for Gd.

J Hazard Mater

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China. Electronic address:

Published: August 2024

Rare earth elements (REEs) pose significant environmental challenges due to the wastewater generated during their extraction. Developing efficient adsorbents with simple, economical and eco-friendly methods for removing and recovering REEs from wastewater is highly demanded but full of challenges. This study creates a novel adsorbent (g-CN/0.5DPal) for efficient REEs removal and recovery by integrating the low-grade mineral dolomite-palygorskite with g-CN through a "one-pot" calcination method. Characterization techniques including SEM, XRD, FT-IR, XPS, etc., were employed to analyze the structure of the g-CN/0.5DPal composite. Batch adsorption experiments focusing on Gd from among the REEs were conducted to evaluate the adsorption performance. The results reveal a remarkable 3.34 times increase in Gd adsorption capacity of g-CN/0.5DPal (192.46 mg/g) compared to raw dolomite-palygorskite (57.62 mg/g) at 298 K, highlighting the effectiveness of the modification. The adsorption mechanism involves electrostatic interactions, surface complexation, and cation-π interactions. It is worth noting that g-CN facilitates the conversion of dolomite to calcite during the preparation process, enhancing the Gd adsorption of g-CN/0.5DPal. This work offers a promising solution for the removal and recovery of REEs and the high-value utilization of low-grade minerals, addressing both environmental concerns and resource sustainability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134859DOI Listing

Publication Analysis

Top Keywords

adsorption mechanism
8
removal recovery
8
adsorption
6
rees
5
g-cn modified
4
modified natural
4
natural low-grade
4
low-grade dolomite-palygorskite
4
dolomite-palygorskite removal
4
removal capacity
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.

View Article and Find Full Text PDF

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.

View Article and Find Full Text PDF

Understanding the adsorption behavior of intermediates at interfaces is crucial for various heterogeneous systems, but less attention has been paid to metal species. This study investigates the manipulation of Co spin states in ZnCoO spinel oxides and establishes their impact on metal ion adsorption. Using electrochemical sensing as a metric, we reveal a quasi-linear relationship between the adsorption affinity of metal ions and the high-spin state fraction of Co sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!