Poly(butylene adipate-co-terephthalate) (PBAT) is widely utilized in the production of food packaging and mulch films. Its extensive application has contributed significantly to global solid waste, posing numerous environmental challenges. Recently, enzymatic recycling has emerged as a promising eco-friendly solution for the management of plastic waste. Here, we systematically investigate the depolymerization mechanism of PBAT catalyzed by cutinase TfCut with molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations. Although the binding affinities for acid ester and terephthalic acid ester bonds are similar, a regioselective depolymerization mechanism and a "chain-length" effect on regioselectivity were proposed and evidenced. The regioselectivity is highly associated with specific structural parameters, namely Substrate@O4-Met@H7 and Substrate@C1-Ser@O1 distances. Notably, the binding mode of BTa captured by X-ray crystallography does not facilitate subsequent depolymerization. Instead, a previously unanticipated binding mode, predicted through computational analysis, is confirmed to play a crucial role in BTa depolymerization. This finding proves the critical role of computational modelling in refining experimental results. Furthermore, our results revealed that both the hydrogen bond network and enzyme's intrinsic electric field are instrumental in the formation of the final product. In summary, these novel molecular insights into the PBAT depolymerization mechanism offer a fundamental basis for enzyme engineering to enhance industrial plastic recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134797DOI Listing

Publication Analysis

Top Keywords

depolymerization mechanism
12
computational modelling
8
acid ester
8
binding mode
8
depolymerization
6
regioselective enzymatic
4
enzymatic depolymerization
4
depolymerization aromatic-aliphatic
4
aromatic-aliphatic polyester
4
polyester revealed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!