Assisted reproduction is a key aspect of modern animal breeding, providing valuable assistance in improving breeding programs. In this field, the administration of exogenous hormones, such as follicle-stimulating hormone (FSH), plays a crucial role in the induction of multiple ovulations. However, commercial FSH used in veterinary practice has been derived primarily from pituitary glands, obtained mostly from pigs for nearly four decades. Although these hormones have contributed significantly to the advancement of assisted reproductive techniques, they have certain limitations that warrant further improvements. These limitations include contamination with luteinizing hormone (LH), the potential risk of pathogen contamination, the potential to trigger an immune response in non-pig species, and the short half-life in circulation, requiring the implementation of complex 8-dose superovulation schedules. Our research team has developed and characterized a new variant of bovine follicle-stimulating hormone (bscrFSH) to address these limitations. The new hormone is produced recombinantly in CHO cell cultures, with a specific productivity of about 30 pg/cell/day. The bscrFSH can be purified to a high purity of 97 % using a single step of immobilized metal affinity chromatography (IMAC). N-glycan analysis of bscrFSH showed that approximately 74 % of the glycans corresponded to charged structures, including mono-, di-, tri-, and tetra-sialylated glycans. Superovulation trials conducted in cattle revealed that bscrFSH, administered at a total dose of about 0.5 μg per kg of body weight, using a decrescent schedule of 4 doses with 24-h intervals, resulted in an average yield of 8-12 transferable embryos per animal. Further research is required; however, the preliminary findings indicate that bscrFSH, currently packaged under the provisional brand name of Cebitropin B, holds potential as a commercial product for assisted reproduction in ruminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2024.05.038 | DOI Listing |
Zygote
December 2024
Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Treatment with follicle-stimulating hormone (FSH) and testosterone (T2) and their combination have been observed to be influential on ovarian follicles of 1-day-old mice ovaries cultured for 8 days. Given that extension of the culture period could positively impact the development of follicles in cultured ovaries, the present study was conducted to evaluate the main and interaction effects of FSH by T2 on the development of ovarian follicles in 1-day-old mice ovaries cultured for 12 days. One-day-old mice ovaries were initially cultured with base medium for 4 days; thereafter, different hormonal treatments were added to the culture media, and the culture was continued for 8 additional days until day 12.
View Article and Find Full Text PDFJ Reprod Dev
December 2024
Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
Due to the strong demand for embryo production from young and genotyped superior animals using ovum-pick up (OPU) combined with in vitro fertilization (IVF), the number of in vitro-produced embryos has exceeded that of in vivo-derived embryos globally since 2016. One of the merits of OPU-IVF is that the administration of follicle-stimulating hormone (FSH) is not essential, while FSH treatment prior to OPU promotes oocyte developmental competence. Thus, investigations are needed to optimize OPU-IVF protocols with and without FSH.
View Article and Find Full Text PDFJ Biotechnol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China. Electronic address:
The Pichia pastoris expression system is a favorable platform for production of pharmaceutical proteins. Treatment of strains with N-acetyl-L-cysteine (NAC) has been shown to enhance the yield of recombinant proteins, thereby contributing to a reduction in production costs. However, the specific mechanism of action of NAC remains unclear.
View Article and Find Full Text PDFBMC Womens Health
December 2024
Department of Diagnostic Radiology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan.
Background: Most cases of ovarian hyperstimulation syndrome (OHSS) are caused by infertility treatment using human menopausal gonadotropin (HMG) and human chorionic gonadotropin (hCG). OHSS is widely known to have a "spoke-wheel" appearance on imaging, presenting as bilateral symmetric enlargement of ovaries with multiple cysts of varying sizes. When this spoke-wheel appearance is observed in patients not undergoing infertility treatment, tumor-derived hormones such as follicle-stimulating hormone (FSH) and hCG should be measured.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
December 2024
One Day Medical Center, Via Attilio Ambrosini 114, Rome, 00147, Italy.
Background: A normal luteal function is an essential factor for maintaining pregnancy; luteal phase deficiency decreases embryo implantation and pregnancy rate and increases the early miscarriage rate. In stimulated in vitro fertilization-embryo transfer (IVF-ET) patients, luteal phase support (LPS) is achieved by the exogenous supplementation with progesterone to increase endometrial receptivity and pregnancy. While several protocols exist, no commonly accepted protocol has been established for optimal luteal support after IVF-ET to date, the purpose of this study was to investigate the effect of two different luteal phase support protocols in patients undergoing assisted reproductive technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!