Direct or indirect interactions between sympatric wildlife and poultry can lead to interspecies disease transmission. Particularly, avian influenza (AI) is a viral epidemic disease for which the poultry-wild bird interface shapes the risks of new viral introductions into poultry holdings. Given this background, the study hereby presented aimed to identify wild bird species in poultry house surroundings and characterize the spatiotemporal patterns of these visits. Eight camera traps were deployed for a year (January to December 2021) in 3 commercial chicken layer farms, including free-range and barn-type setups, located in a densely populated poultry area in Northern Italy at high risk for AI introduction via wild birds. Camera traps' positions were chosen based on wildlife signs identified during preliminary visits to the establishments studied. Various methods, including time series analysis, correspondence analysis, and generalized linear models, were employed to analyze the daily wild bird visits. A total of 1,958 camera trap days yielded 5,978 videos of wild birds from 27 different species and 16 taxonomic families. The animals were predominantly engaged in foraging activities nearby poultry houses. Eurasian magpies (Pica pica), ring-necked pheasants (Phasianus colchicus), and Eurasian collared doves (Streptopelia decaocto) were the most frequent visitors. Mallards (Anas platyrhynchos), an AI reservoir species, were observed only in a farm located next to a fishing sport lake. Time series analysis indicated that wild bird visits increased during spring and winter. Farm and camera trap location also influenced visit frequencies. Overall, the results highlighted specific species that could be prioritized for future AI epidemiological surveys. However, further research is required to assess their susceptibility and infectivity to currently circulating AI viruses, essential for identifying novel bridge hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223120PMC
http://dx.doi.org/10.1016/j.psj.2024.103892DOI Listing

Publication Analysis

Top Keywords

wild bird
12
bird interface
8
camera traps
8
avian influenza
8
northern italy
8
wild birds
8
time series
8
series analysis
8
bird visits
8
camera trap
8

Similar Publications

Wild birds sampled in Italy tested for aMPV detection and characterization.aMPV-B found for the first time in a wintering Northern shoveler.Close phylogenetic relationship with aMPV-B strains circulating in Italian poultry.

View Article and Find Full Text PDF

Among the diverse sexual signals used by birds, the possible signaling functions of non-bodily objects during mating/courting displays remain unexplained. It is unclear whether such object-holding gestures are purely ritualistic or serve as an advertisement of an extended phenotype to potential mates. Estrildid finches (family Estrildidae) are characterized by mutual courtship, during which either a male or female will hold nesting material (usually grass stems or straw) in the beak while singing and dancing toward the opposite sex.

View Article and Find Full Text PDF

Long-distance migration, common in passerine birds, is rare and poorly studied in bats. Piloting a 1.2-gram IoT (Internet of Things) tag with onboard processing, we tracked the daily location, temperature, and activity of female common noctules () during spring migration across central Europe up to 1116 kilometers.

View Article and Find Full Text PDF

The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!