Background: Pyriproxyfen is an insect growth regulator (IGR) that is effective against various types of insect pests. However, the molecular mechanism underlying pyriproxyfen effects on insect reproduction remains unclear. Thus, in this study, we attempted to uncover the mechanisms underlying the impact of pyriproxyfen on the reproductive system of the model organism Drosophila melanogaster.

Results: A significant decrease in Drosophila reproduction was observed after pyriproxyfen treatment. The juvenile hormone (JH) titer was significantly increased (120.4%) in the ovary samples of pyriproxyfen-treated flies. Likewise, the concentrations of key enzymes and the expression of key genes related to the JH signaling pathway were also increased in the pyriproxyfen-treated group compared with the control group. Furthermore, pyriproxyfen treatment significantly increased (15.6%) the number of germline stem cells (GSCs) and significantly decreased (17%) the number of cystoblasts (CBs). However, no significant differences were observed in the number of somatic cells. We performed RNA interference (RNAi) on five key genes (Met, Tai, gce, ftz-f1, and hairy) related to the JH signaling pathway in germ cells using the germ cell-specific Gal4 driver. Interestingly, RNAi of the selected genes significantly decreased the number of both GSCs and CBs in pyriproxyfen-treated transgenic flies. These results further validate that pyriproxyfen enhances GSC proliferation by up-regulating JH signaling.

Conclusion: Our results indicate that pyriproxyfen significantly decreases reproduction by affecting germ cells in female adult ovaries. The effect of pyriproxyfen on germ cell proliferation and differentiation is mediated by an increase in JH signaling. This study has significant implications for optimizing pest control strategies, developing sustainable agriculture practices, and understanding the mechanism of insecticide action. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.8234DOI Listing

Publication Analysis

Top Keywords

pyriproxyfen
9
pyriproxyfen enhances
8
germline stem
8
cell proliferation
8
juvenile hormone
8
pyriproxyfen treatment
8
key genes
8
signaling pathway
8
germ cells
8
enhances germline
4

Similar Publications

Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp () to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures.

View Article and Find Full Text PDF

Background: Anoph known to be local malaria vector in South East Asia but recently found expanding to the horn of Africa including urban areas of Ethiopia. Recent studies indicated that high level of insecticide resistance to pyrethroid (Deltamethrin, permethrin and alpha-cypermethrin), Carbamates (Bendiocarb and Propoxur) and organophosphates (pirimiphos-methyl). The aim, of this study was to evaluate the susceptibility of from Diredawa against broflanilide, chlorfenapyr, clothianidin and pyriproxyfen.

View Article and Find Full Text PDF

Insecticide based paint formulations have been available since years, however the concept of using such paint products at household level did not get attention due to various reasons. The advancement in insecticidal paint technology has steered toward the development and evaluation of such formulations for use against arthropod vectors. The improved insecticidal paint formulations may contain two or more active agents, hence could display different type of activity against the target vectors.

View Article and Find Full Text PDF
Article Synopsis
  • Generalist arthropod predators play a key role in controlling pest populations in agriculture, and successful pest management relies on using insecticides that don’t harm these natural enemies.
  • In a study, researchers tested the effects of two insecticides, cyantraniliprole and pyriproxyfen, on two predator species and whitefly nymphs in both lab and field settings.
  • While pyriproxyfen had little effect on the predators, cyantraniliprole reduced survivorship and prey consumption in lab conditions, though in the field, predator access was more crucial in controlling whitefly populations than the impact of insecticides.
View Article and Find Full Text PDF

Ground water tanks are known to be preferred Aedes aegypti oviposition places providing opportunities for adult and larvae control. Therefore, a dual-effect insecticidal coating (IC) (alphacypermethrin/ pyriproxyfen) with a slow-release mechanism and safe for users could be applied within Aedes spp. breeding sites, representing a promising option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!