Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates. Our nuclease-assisted selection strategy can yield specific aptamers for both small molecules and proteins with off-rates that are an order of magnitude slower relative to those obtained with conventional selection methods while still retaining excellent overall target affinity in terms of thermodynamics. This new methodology provides a generalizable approach for generating slow off-rate aptamers for diverse targets, which could, in turn, prove valuable for applications including molecular devices, bioimaging, and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168469 | PMC |
http://dx.doi.org/10.1126/sciadv.adl3426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!