Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663564PMC
http://dx.doi.org/10.1093/plphys/kiae336DOI Listing

Publication Analysis

Top Keywords

water transport
16
waterlogging
12
response waterlogging
12
leaves stems
12
leaf hydraulic
12
hydraulic conductance
12
leaf
9
waterlogging drought
8
water potentials
8
decline leaf
8

Similar Publications

Baleen whales are among the largest marine megafauna, and while mostly well-protected from direct exploitation, they are increasingly affected by vessel traffic, interactions with fisheries, and climate change. Adverse interactions, notably vessel strikes and fishing gear entanglement, often result in distress, injury, or death for these animals. In Atlantic Canadian waters, such negative interactions or 'incidents' are consistently reported to marine animal response organizations but have not yet been analyzed relative to the spatial distribution of whales and vessels.

View Article and Find Full Text PDF

Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment.

View Article and Find Full Text PDF

We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.

View Article and Find Full Text PDF

Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.

View Article and Find Full Text PDF

Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac.

J Chem Phys

January 2025

Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.

Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!