Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interactions between Gram-negative bacterial pathogens and their hosts. Identifying T3SEs is essential in biomedical research for comprehending bacterial pathogenesis and its implications on human cells. This study presents EDIFIER, a novel multi-channel model designed for accurate T3SE prediction. It incorporates a graph structural channel, utilizing graph convolutional networks (GCN) to capture protein 3D structural features and a sequence channel based on the ProteinBERT pre-trained model to extract the sequence context features of T3SEs. Rigorous benchmarking tests, including ablation studies and comparative analysis, validate that EDIFIER outperforms current state-of-the-art tools in T3SE prediction. To enhance EDIFIER's accessibility to the broader scientific community, we developed a webserver that is publicly accessible at http://edifier.unimelb-biotools.cloud.edu.au/. We anticipate EDIFIER will contribute to the field by providing reliable T3SE predictions, thereby advancing our understanding of host-pathogen dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3413146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!