Bioactive Metal Ion-Coordinated Dynamic Hydrogel with Antibacterial, Immunomodulatory, and Angiogenic Activities for Infected Wound Repair.

ACS Appl Mater Interfaces

Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Published: June 2024

The repair of infected wounds is a complex physiopathologic process. Current studies on infected wound treatment have predominantly focused on infection treatment, while the factors related to delayed healing caused by vascular damage and immune imbalance are commonly overlooked. In this study, an extracellular matrix (ECM)-like dynamic and multifunctional hyaluronic acid (HA) hydrogel with antimicrobial, immunomodulatory, and angiogenic capabilities was designed as wound dressing for the treatment of infected skin wounds. The dynamic network in the hydrogel dressing was based on reversible metal-ligand coordination formed between sulfhydryl groups and bioactive metal ions. In our design, antibacterial silver and immunomodulatory zinc ions were employed to coordinate with sulfhydrylated HA and a vasculogenic peptide. In addition to the desired bioactivities for infected wounds, the hydrogel could also exhibit self-healing and injectable abilities. Animal experiments with infected skin wound models indicated that the hydrogel dressings enabled minimally invasive injection and seamless skin wound covering and then facilitated wound healing by efficient bacterial killing, continuous inflammation inhibition, and improved blood vessel formation. In conclusion, the metal ion-coordinated hydrogels with wound-infection-desired bioactivities and ECM-like dynamic structures represent a class of tissue bionic wound dressings for the treatment of infected and chronic inflammation wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05967DOI Listing

Publication Analysis

Top Keywords

bioactive metal
8
metal ion-coordinated
8
immunomodulatory angiogenic
8
infected wound
8
infected wounds
8
ecm-like dynamic
8
treatment infected
8
infected skin
8
skin wound
8
infected
7

Similar Publications

In view of the high propensity of tertiary alkyl amines to be bioactive, the development of new methods for their synthesis is an important challenge. Transition-metal catalysis has the potential to greatly expand the scope of nucleophilic substitution reactions of alkyl electrophiles; unfortunately, in the case of alkyl amines as nucleophiles, only one success has been described so far: the selective mono-alkylation of primary amines to form secondary amines. Here, using photoinduced copper catalysis, we report the synthesis of tertiary alkyl amines from secondary amines and unactivated alkyl electrophiles, two readily available coupling partners.

View Article and Find Full Text PDF

Bioactive microspheres to enhance sonodynamic-embolization-metalloimmune therapy for orthotopic liver cancer.

Biomaterials

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:

The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.

View Article and Find Full Text PDF

Enantioselective [3+2] Annulation of Aldimines with Alkynes by Scandium-Catalyzed C-H Activation.

Angew Chem Int Ed Engl

January 2025

RIKEN, Organometallic Chemistry Laboratory, 2-1 Hirosawa, 351-0198, Wako, Saitama, JAPAN.

The enantioselective [3+2] annulation of readily accessible aldimines with alkynes via C-H activation is, in principle, a straightforward and atom-efficient route for synthesizing chiral 1-aminoindenes, which are important components in a wide array of natural products, bioactive molecules, and functional materials. However, such asymmetric transformation has remained undeveloped to date due to the lack of suitable chiral catalysts. Here, we report for the first time the enantioselective [3+2] annulation of aldimines with alkynes via C-H activation using chiral half-sandwich scandium catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!