This article focuses on the synchronization problem of delayed chaotic neural networks via adaptive impulsive control. An adaptive impulsive gain law in a discrete-time framework is designed. The delay is handled skillfully by using the Lyapunov-Razumikhin method. To improve the flexibility of impulsive control, an event-triggered impulsive strategy to determine when the impulsive instant happens is designed. Additionally, it is proved that the event-triggered impulsive sequence cannot result in the occurrence of Zeno behavior. Some criteria are derived to guarantee synchronization for delayed chaotic neural networks. Eventually, an illustrative example is presented to empirically validate the effectiveness of the suggested strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0211621 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!