Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-024-10844-zDOI Listing

Publication Analysis

Top Keywords

ahnak2
12
ahnak2 knockdown
12
pac
10
ahnak2 regulates
8
nf-κb/mmp-9 signaling
8
pancreatic cancer
8
mechanisms ahnak2
8
ahnak2 mrna
8
mrna protein
8
western blot
8

Similar Publications

Background/aim: Bile tract cancer (BTC) is a malignant tumor with a poor prognosis. Recent studies have reported the heterogeneity of the genomic background and gene alterations in BTC, but its genetic heterogeneity and molecular profiles remain poorly understood. Whole-genome sequencing may enable the identification of novel actionable gene mutations involved in BTC carcinogenesis, malignant progression, and treatment resistance.

View Article and Find Full Text PDF

Undifferentiated pleomorphic sarcoma (UPS) is a highly malignant mesenchymal tumor that ranks as one of the most common types of soft tissue sarcoma. Even though chemotherapy increases the 5-year survival rate in UPS, high tumor heterogeneity frequently leads to chemotherapy resistance and consequently to recurrences. In this study, we characterized the cell composition and the transcriptional profile of UPS with resistance to chemotherapy at the single cell resolution.

View Article and Find Full Text PDF

The Immunomodulatory Effects of Vitamin D on COVID-19 Induced Glioblastoma Recurrence via the PI3K-AKT Signaling Pathway.

Int J Mol Sci

December 2024

Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.

Glioma is a highly invasive brain cancer that is difficult to treat due to its complex molecular characteristics and poor prognosis. The COVID-19 pandemic has introduced additional clinical challenges for cancer patients, especially those with glioma. This study explored the molecular interactions between glioma and COVID-19 using integrated bioinformatics methods, including enrichment analysis, survival analysis, and molecular docking, focusing on the PI3K-Akt signaling pathway and the immunomodulatory role of vitamin D.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) accounts for over 40% of all non-small cell lung cancer (NSCLC) cases and continues to be difficult to treat despite advancements in diagnostics and therapies. Ferritinophagy, a newly recognized autophagy process linked to ferroptosis, has been associated with LUAD development. Recent studies have shown a dysregulation of genes related to ferritinophagy in LUAD, indicating its potential as a therapeutic target.

View Article and Find Full Text PDF

Breast cancer genomic analyses reveal genes, mutations, and signaling networks.

Funct Integr Genomics

November 2024

Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.

Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!