Background: Three-dimensional (3D) printing technology has impacted many clinical applications across medicine. However, 3D printing for Minimally Invasive Direct Coronary Artery Bypass (MIDCAB) has not yet been reported in the peer-reviewed literature. The current observational cohort study aimed to evaluate the impact of half scaled (50% scale) 3D printed (3DP) anatomic models in the pre-procedural planning of MIDCAB.

Methods: Retrospective analysis included 12 patients who underwent MIDCAB using 50% scale 3D printing between March and July 2020 (10 males, 2 females). Distances measured from CT scans and 3DP anatomic models were correlated with Operating Room (OR) measurements. The measurements were compared statistically using Tukey's test. The correspondence between the predicted (3DP & CT) and observed best InterCostal Space (ICS) in the OR was recorded. Likert surveys from the 3D printing registry were provided to the surgeon to assess the utility of the model. The OR time saved by planning the procedure using 3DP anatomic models was estimated subjectively by the cardiothoracic surgeon.

Results: All 12 patients were successfully grafted. The 3DP model predicted the optimal ICS in all cases (100%). The distances measured on the 3DP model corresponded well to the distances measured in the OR. The measurements were significantly different between the CT and 3DP (p < 0.05) as well as CT and OR (p < 0.05) groups, but not between the 3DP and OR group. The Likert responses suggested high clinical utility of 3D printing. The mean subjectively estimated OR time saved was 40 min.

Conclusion: The 50% scaled 3DP anatomic models demonstrated high utility for MIDCAB and saved OR time while being resource efficient. The subjective benefits over routine care that used 3D visualization for surgical planning warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167900PMC
http://dx.doi.org/10.1186/s41205-024-00222-1DOI Listing

Publication Analysis

Top Keywords

anatomic models
12
distances measured
12
minimally invasive
8
invasive direct
8
direct coronary
8
coronary artery
8
artery bypass
8
50% scale
8
3dp anatomic
8
3dp model
8

Similar Publications

Histological healing in IBD: Ready for prime time?

Dig Liver Dis

January 2025

Gastroenterology and Hepatology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.

The main target of treatment in ulcerative colitis and Crohn's disease is to achieve a complete so-called mucosal healing. Various definitions of mucosal healing are available in literature, and the most recent ones include a combination of endoscopic and histological remission. However, the assessment of a complete histological remission is not always univocal.

View Article and Find Full Text PDF

Introduction: Eradication of residual biofilm from root canal dentine is critical for the success of regenerative endodontic procedures (REPs).

The Aim Of The Study: To evaluate the influence of ultrasonically activated irrigants in concentrations used for REPs for removal of dual-species biofilm from three-dimensionally printed tooth models with attached dentine samples.

Methodology: Seventy-two three-dimensionally printed teeth models were fabricated with a standardized slot in the apical third of the root to ensure a precise fit with a human root dentine specimen.

View Article and Find Full Text PDF

Middle ear barotrauma (MEBT) is the most common complication in providing hyperbaric oxygen therapy (HBO). This study explored the impact of altering the shape of the time-pressure curve with the aim of reducing the occurrence of MEBT and optimizing the HBO experience during the pressurization process. Four distinct mathematically derived protocols-Constant Pressure Difference (CPD), Constant Volume Difference (CVD), Constant Ratio (CR), and Inverted Constant Ratio (ICR)-were investigated using computer simulations on a simple ear model.

View Article and Find Full Text PDF

Rationale: Most premature human infants are born in the moderate to late preterm (MLP) range, ≥30 to <37 weeks gestation and demonstrate increased incidence of wheeze and respiratory illness as they age. Animal models suggest that mechanical lung distention stimulates lung growth and alveolar development. To determine if nasal continuous positive airway pressure (nCPAP) influences MLP infant lung development, we developed a rhesus monkey model of moderate prematurity, randomized to 9 days of nCPAP or sham nCPAP.

View Article and Find Full Text PDF

Purpose: To create tridimensional (3D) anatomical models of diaphyseal fractures in dogs (3D AMDFD) and to evaluate the models from their radiographs.

Methods: The study consisted of six stages: preparation of femur from a healthy dog cadaver; digitalization of the bone through a 3D scanner and creation of the base model; creation of a 3D AMDFD based on the image of the base model, 3D modeling carried out to reproduce five different types of diaphyseal fractures; printing the models produced on a 3D printer with a thermoplastic material; insertion of neodymium magnets in the fracture line to allow the assembly and disassembly of the parts; and radiography of 3D AMDFD in lateromedial and craniocaudal positions.

Results: The base model and 3D AMDFD had high precision in the replication of bone structures, like the bone in natura.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!