The detection applications of europium complex-doped microspheres mainly rely on strong fluorescence intensity and a well-defined morphology. In this work, using methyl methacrylate-modified polystyrene microspheres has been proven an effective strategy to enhance the fluorescence and morphology of Eu-complexes. The experimental results showed that the modification resulted in the formation of a porous structure within the polystyrene microspheres, enhancing the doping uniformity and facilitating a more significant accumulation of fluorescent molecules. Furthermore, because of their encapsulation ability, microspheres efficiently confine the fluorescent molecules within them. In addition, the nano-scale porous structure endowed the microspheres with enhanced properties without compromising solvent swelling capability, thereby significantly boosting the fluorescence performance of porous PSMMA. In lateral flow immunoassays (LFIAs), PSMMA-Eu microspheres were effectively utilized to detect fentanyl with exceptional sensitivity by capitalizing on these benefits, capable of detecting concentrations as low as 0.10 ng mL. This technology has significant potential for rapid point-of-care screening and clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp01454e | DOI Listing |
J Hazard Mater
January 2025
School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430070, China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430070, China. Electronic address:
Artificial intelligence-assisted imaging biosensors have attracted increasing attention due to their flexibility, allowing for the digital image analysis and quantification of biomarkers. While deep learning methods have led to advancements in biomarker identification, the diversity in the density and adherence of targets still poses a serious challenge. In this regard, we propose CellNet, a neural network model specifically designed for detecting dense targets.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.
In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.
African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil.
Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!