Using nonequilibrium computer simulations, we study the response of ferromagnetic nanofilaments, consisting of stabilized one dimensional chains of ferromagnetic nanoparticles, under external rotating magnetic fields. In difference with their analogous microscale and stiff counterparts, which have been actively studied in recent years, nonequilibrium properties of rather flexible nanoparticle filaments remain mostly unexplored. By progressively increasing the modeling details, we are able to evidence the qualitative impact of main interactions that can not be neglected at the nanoscale, showing that filament flexibility, thermal fluctuations and hydrodynamic interactions contribute independently to broaden the range of synchronous frequency response in this system. Furthermore, we also show the existence of a limited set of characteristic dynamic filament configurations and discuss in detail the asynchronous response, which at finite temperature becomes probabilistic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01034e | DOI Listing |
Biosensors (Basel)
December 2024
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
New unconventional compensated magnets with a p-wave spin polarization protected by a composite time-reversal translation symmetry have been proposed in the wake of altermagnets. To facilitate the experimental discovery and applications of these unconventional magnets, we construct an effective analytical model. The effective model is based on a minimal tight-binding model for unconventional p-wave magnets that clarifies the relation to other magnets with p-wave spin-polarized bands.
View Article and Find Full Text PDFBackground: Foreign body (coins, magnets, button batteries, and metallic foreign bodies) ingestion is common and causes significant morbidity and mortality in children aged six months to three years. Endoscopic removal of swallowed foreign substances is widely accepted, but sedation and general anesthesia may be required to alleviate pain and anxiety during the procedure. Dexmedetomidine is used as a sedative, hypnotic, anxiolytic, and analgesic.
View Article and Find Full Text PDFBioact Mater
March 2025
Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea.
Tissue-engineered anisotropic cell constructs are promising candidates for treating volumetric muscle loss (VML). However, achieving successful cell alignment within macroscale 3D cell constructs for skeletal muscle tissue regeneration remains challenging, owing to difficulties in controlling cell arrangement within a low-viscosity hydrogel. Herein, we propose the concept of a magnetorheological bioink to manipulate the cellular arrangement within a low-viscosity hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!