Objective: To evaluate the outcome of Augmented reality technology in the recognizing of oral and maxillofacial anatomy.
Methods: This study was conducted on the undergraduate students in Peking University School of Stomatology who were learning oral and maxillofacial anatomy. The image data were selected according to the experiment content, and the important blood vessels and bone tissue structures, such as upper and lower jaws, neck arteries and veins were reconstructed in 3D(3-dimensional) by digital software to generate experiment models, and the reconstructed models were encrypted and stored in the cloud. The QR (quick response) code corresponding to the 3D model was scanned by a networked mobile device to obtain augmented reality images to assist experimenters in teaching and subjects in recognizing. Augmented reality technology was applied in both the theoretical explanation and cadaveric dissection respectively. Subjects' feedback was collected in the form of a post-class questionnaire to evaluate the effectiveness of augmented reality technology-assisted recognizing.
Results: In the study, 83 undergraduate students were included as subjects in this study. Augmented reality technology could be successfully applied in the recognizing of oral and maxillofacial anatomy. All the subjects could scan the QR code through a connected mobile device to get the 3D anatomy model from the cloud, and zoom in/out/rotate the model on the mobile. Augmented reality technology could provide personalized 3D model, based on learners' needs and abilities. The results of likert scale showed that augmented reality technology was highly recognized by the students (9.19 points), and got high scores in terms of forming a three-dimensional sense and stimulating the enthusiasm for learning (9.01 and 8.85 points respectively).
Conclusion: Augmented reality technology can realize the three-dimensional visualization of important structures of oral and maxillofacial anatomy and stimulate students' enthusiasm for learning. Besides, it can assist students in building three-dimensional space imagination of the anatomy of oral and maxillofacial area. The application of augmented reality technology achieves favorable effect in the recognizing of oral and maxillofacial anatomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167552 | PMC |
http://dx.doi.org/10.19723/j.issn.1671-167X.2024.03.023 | DOI Listing |
Sensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Pediatric Surgery Department, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 11, 40138 Bologna, Italy.
Background: In pediatric surgery, a comprehensive knowledge of the child's anatomy is crucial to optimize surgical outcomes and minimize complications. Recent advancements in medical imaging and technology have introduced innovative tools that enhance surgical planning and decision-making.
Methods: This study explores the integration of mixed reality technology, specifically the HoloLens 2 headset, for visualization and interaction with three-dimensional (3D) anatomical reconstructions obtained from computed tomography (CT) scans.
Phys Ther Sport
January 2025
Scottish Rite for Children, TX, USA; University of Texas Southwestern Medical Center, TX, USA.
Objective: To assess differences in physical therapists' exercise prescription and confidence in return-to-sport readiness between girl and boy patients undergoing rehabilitation post-ACLR.
Design: Cross-sectional survey.
Methods: 115 physical therapist responses were collected in an electronic survey.
Surg Innov
January 2025
Department of Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan.
This study evaluates the feasibility of Apple Vision Pro goggles as an augmented reality (AR) surgical navigation tool for laparoscopic-assisted ultrasound-guided radiofrequency ablation (RFA) of liver tumors. Traditional RFA is effective but challenging due to the integration of multiple imaging modalities. The primary aim of this research is to assess how Vision Pro goggles can enhance the surgical navigation process during RFA, improving tumor localization and the overall effectiveness of the procedure.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China.
Diffractive optical elements (DOEs) are specialized optical components that manipulate light through diffraction for various applications, including holography, spectroscopy, augmented reality (AR) and virtual reality (VR), and light detection and ranging (LiDAR). The performance of DOEs is highly determined by fabricated materials and fabrication methods, in addition to the numerical simulation design. This paper presents a microfabrication technique optimized for DOEs, enabling precise control of critical parameters, such as refractive index (RI) and thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!