A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the Progression of Chronic Kidney Disease: A Systematic Review of Artificial Intelligence and Machine Learning Approaches. | LitMetric

Chronic kidney disease (CKD) is a progressive condition characterized by gradual loss of kidney function, necessitating timely monitoring and interventions. This systematic review comprehensively evaluates the application of artificial intelligence (AI) and machine learning (ML) techniques for predicting CKD progression. A rigorous literature search identified 13 relevant studies employing diverse AI/ML algorithms, including logistic regression, support vector machines, random forests, neural networks, and deep learning approaches. These studies primarily aimed to predict CKD progression to end-stage renal disease (ESRD) or the need for renal replacement therapy, with some focusing on diabetic kidney disease progression, proteinuria, or estimated glomerular filtration rate (GFR) decline. The findings highlight the promising predictive performance of AI/ML models, with several achieving high accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve scores. Key factors contributing to enhanced prediction included incorporating longitudinal data, baseline characteristics, and specific biomarkers such as estimated GFR, proteinuria, serum albumin, and hemoglobin levels. Integration of these predictive models with electronic health records and clinical decision support systems offers opportunities for timely risk identification, early interventions, and personalized management strategies. While challenges related to data quality, bias, and ethical considerations exist, the reviewed studies underscore the potential of AI/ML techniques to facilitate early detection, risk stratification, and targeted interventions for CKD patients. Ongoing research, external validation, and careful implementation are crucial to leveraging these advanced analytical approaches in clinical practice, ultimately improving outcomes and reducing the burden of CKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166249PMC
http://dx.doi.org/10.7759/cureus.60145DOI Listing

Publication Analysis

Top Keywords

kidney disease
12
chronic kidney
8
systematic review
8
artificial intelligence
8
intelligence machine
8
machine learning
8
learning approaches
8
ckd progression
8
ckd
5
predicting progression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!