AI Article Synopsis

  • Amoxicillin is a widely used antibiotic that, while generally safe, can occasionally cause severe skin reactions (AMX-SCAR) that are serious.
  • A study was conducted involving patients with AMX-SCAR, a large control group, and those who tolerate AMX, using genetic analysis to identify potential risk factors.
  • Results showed a strong association between certain genetic markers (particularly HLA-B variants) and AMX-SCAR in Han Chinese individuals, indicating a possible genetic susceptibility, but further research is needed to validate these findings across diverse populations.

Article Abstract

Background: Amoxicillin (AMX) is among the most prescribed and the best tolerated antimicrobials worldwide. However, it can occasionally trigger severe cutaneous adverse reactions (SCAR) with a significant morbidity and mortality. The genetic factors that may be relevant to AMX-induced SCAR (AMX-SCAR) remain unclear. Identification of the genetic risk factor may prevent patients from the risk of AMX exposure and resume therapy with other falsely implicated drugs.

Methodology: Four patients with AMX-SCAR, 1,000 population control and 100 AMX-tolerant individuals were enrolled in this study. Both exome-wide and HLA-based association studies were conducted. Molecular docking analysis was employed to simulate the interactions between AMX and risk HLA proteins.

Results: Compared with AMX-tolerant controls, a significant association of with AMX-SCAR was validated [odds ratio (OR) = 22.9, 95% confidence interval (CI): 1.68-1275.67; = 7.34 × 10]. Moreover, 75% carriers of in four patients with AMX-SCAR, and the carrier frequency of 10.7% in 1,000 control individuals and 11.0% in 100 AMX-tolerant controls, respectively. Within HLA-B protein, the S140 present in all cases and demonstrated the strongest association with AMX-SCAR [OR = 53.5, = 5.18 × 10]. Molecular docking results also confirmed the interaction between AMX and S140 of the HLA-B protein, thus eliminating the false-positive results during in association analysis.

Conclusion: Our findings suggest that genetic susceptibility may be involved in the development of AMX-SCAR in Han Chinese. However, whether the HLA-B variants observed in this study can be used as an effective genetic marker of AMX-induced SCAR still needs to be further explored in larger cohort studies and other ethnic populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165025PMC
http://dx.doi.org/10.3389/fphar.2024.1400239DOI Listing

Publication Analysis

Top Keywords

hla-b variants
8
severe cutaneous
8
cutaneous adverse
8
adverse reactions
8
amx-induced scar
8
patients amx-scar
8
100 amx-tolerant
8
molecular docking
8
amx-tolerant controls
8
association amx-scar
8

Similar Publications

Natural Killer Cell Education in Women With Recurrent Pregnancy Loss.

Am J Reprod Immunol

February 2025

GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Problem: Natural killer (NK) cells undergo education for full functionality via interactions between killer immunoglobulin-like receptors (KIRs) or NKG2A and human leukocyte antigen (HLA) ligands. Presumably, education is important during early pregnancy as insufficient education has been associated with impaired vascular remodeling and restricted fetal growth in mice. NK cell education is influenced by receptor co-expression patterns, human cytomegalovirus (CMV), the HLA-E107 dimorphism, and HLA-B leader peptide variants.

View Article and Find Full Text PDF

Molecular docking to investigate HLA-associated idiosyncratic drug reactions.

Drug Metab Rev

January 2025

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Idiosyncratic drug reactions (IDRs) pose severe threats to patient health. Unlike conventionally dose-dependent side effects, they are unpredictable and more frequently manifest as life-threatening conditions, such as severe cutaneous adverse reactions (SCARs) and drug-induced liver injury (DILI). Some HLA alleles, such as , , and , are known risk factors for adverse reactions induced by multiple drugs.

View Article and Find Full Text PDF

Four novel HLA-B noncoding variants detected by next-generation sequencing: HLA-B*07:02:107, -B*08:01:78, -B*15:01:89 and -B*52:01:58.

View Article and Find Full Text PDF

Whole-exome sequencing association study reveals genetic effects on tumor microenvironment components in nasopharyngeal carcinoma.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.

Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.

View Article and Find Full Text PDF

Protein post-translational modifications play a vital role in various cellular events essential for maintaining cellular physiology and homeostasis. In cancer cells, aberrant post-translational modifications such as glycosylation, acetylation, and phosphorylation on proteins can result in the generation of antigenic peptide variants presented in complex with MHC molecules. These modified peptides add to the class of tumorspecific antigens and offer promising avenues for targeted anti- cancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!