The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165100 | PMC |
http://dx.doi.org/10.3389/fcimb.2024.1384939 | DOI Listing |
Viruses
January 2025
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice.
View Article and Find Full Text PDFJ Clin Med
January 2025
Disturbances of Growth and Development on Children Research Center, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timișoara, Romania.
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), is increasingly recognized as a condition affecting not only adults but also children and adolescents. While children often experience milder acute COVID-19 symptoms compared to adults, some develop persistent physical, psychological, and neurological symptoms lasting for weeks or months after initial infection. The most commonly reported symptoms include debilitating fatigue, respiratory issues, headaches, muscle pain, gastrointestinal disturbances, and cognitive difficulties, which significantly impact daily activities, schooling, and social interactions.
View Article and Find Full Text PDFLife (Basel)
January 2025
Physiotherapy Program, Faculty of Health, Universidad Santiago de Cali, Cali 760035, Colombia.
Background And Aims: Telerehabilitation is essential for the recovery of post-COVID-19 patients, improving exercise tolerance, dyspnea, functional capacity, and daily activity performance. This study aimed to describe telerehabilitation protocols specifically designed for individuals with post-COVID-19 sequelae.
Materials And Methods: A systematic review was conducted with registration number CRD42023423678, based on searches developed in the following databases: ScienceDirect, Scopus, Dimensions.
Medicina (Kaunas)
January 2025
Department of Physiotherapy and Rehabilitation (English), Faculty of Health Sciences, Biruni University, 34015 Istanbul, Turkey.
Long COVID-19 syndrome may cause difficulties in functionality during daily life in young people. Our objective was to investigate the respiratory and functional sequelae in young adults with asymptomatic or mild COVID-19 compared with healthy peers 3-6 months and 6-12 months after COVID-19 infection. Participants aged 18-25 who had COVID-19 within the last 3-6 months (Post-COVID Group 1, n = 25) and 6-12 months (Post-COVID Group 2, n = 25) and age-gender-matched healthy controls (n = 25) were included in this study.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134 Florence, Italy.
The mechanisms underlying post-acute sequelae of SARS-CoV-2 infection (PASC) are a topic of debate. This study examined the presence of SARS-CoV-2 microRNA (miRNA)-like small RNAs in extracellular fluids and their potential link to PASC by using a quantitative stem-loop RT-PCR MiRNA assay. Initially, it was demonstrated that three previously identified SARS-CoV-2 miRNA-like small RNAs, specifically svRNA 1 and 2 and miR-07a, were significantly expressed in infected cells in vitro and released into the supernatant following infection by different SARS-CoV-2 variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!