The valorization of biomass and its transformation into fuels are highly interesting due to the abundance of biomass and its almost neutral carbon emissions. In this article, we show the production of γ-valerolactone (GVL), a valuable product, from furfural (FF), a compound that can be easily obtained from biomass. This FF to GVL transformation involves a catalytic cascade reaction with two hydrogenation steps. Pt and/or Zr supported on sepiolite catalysts have been prepared and tested in the FF transformation reaction. A physical mixture of a Zr-based and a Pt-based catalyst has reached a yield to GVL of ca. 50% after 16 h at 180 °C. This performance largely exceeds that obtained by each of the single Pt or single Zr metal catalysts independently, showing a strong synergistic effect. These data suggest that each metal (Pt and Zr) plays an important and complementary role in different reaction steps. Furthermore, the physical mixture appears to be much more efficient than bimetallic Pt/Zr catalysts synthesized with the same amount of metals. The role of the type of acidity and the oxidation state of the surface platinum species on the catalytic performance has been discussed. Moreover, this reaction has been carried out in batch and continuous flow reactors, and a comparative study between the two operation modes has been undertaken. A certain correlation between the catalytic results obtained by both operation modes has been found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164049PMC
http://dx.doi.org/10.1021/acs.energyfuels.4c01174DOI Listing

Publication Analysis

Top Keywords

batch continuous
8
continuous flow
8
flow reactors
8
physical mixture
8
operation modes
8
promoter catalysts
4
catalysts increase
4
increase conversion
4
conversion furfural
4
furfural γ-valerolactone
4

Similar Publications

Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.

View Article and Find Full Text PDF

During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways.

View Article and Find Full Text PDF

We report the development and optimization of a scalable flow process for metallaphotoredox (Ir/Ni) C-O coupling, a mild and efficient approach for forming alkyl-aryl ethers, a common motif in medicinal and process chemistry settings. Time-resolved infrared spectroscopy (TRIR) highlighted the amine as the major quencher of the photocatalyst triplet excited state, along with the formation of an Ir(II) species that, in the presence of the Ni cocatalyst, has its lifetime shortened, suggesting reductive quenching of Ir(III)*, followed by reoxidation facilitated by the Ni cocatalyst. TRIR and batch reaction screening was used to develop conditions transferrable to flow, and many processing benefits of performing the reaction in flow were then demonstrated using a simple to construct/operate, small-footprint FEP coil flow reactor, including short (<10 min) space times and reduced catalyst loadings (down to 0.

View Article and Find Full Text PDF

Self-sufficient biocatalytic cascade for the continuous synthesis of danshensu in flow.

Appl Microbiol Biotechnol

January 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.

View Article and Find Full Text PDF

Self-assembled bottlebrush block copolymers (BBCPs) offer a vibrant, eco-friendly alternative to traditional toxic pigments and dyes, providing vivid structural colors with significantly reduced environmental impact. Scaling up the synthesis of these polymers for practical applications has been challenging with conventional batch methods, which suffer from slow mass and heat transfer, inadequate mixing, and issues with reproducibility. Precise control over molecular weight and dispersity remains a significant challenge for achieving finely tuned color appearances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!