A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Structural Topic Modeling Analysis of Patient Safety Interest among Health Consumers in Social Media]. | LitMetric

[Structural Topic Modeling Analysis of Patient Safety Interest among Health Consumers in Social Media].

J Korean Acad Nurs

The Research Institute of Nursing Science · College of Nursing, Seoul National University, Seoul, Korea.

Published: May 2024

AI Article Synopsis

  • * Three main topics emerged: the need for systemic improvements in medical accident accountability, government efforts for safety management, and concerns over media-exposed medical negligence.
  • * The research underscores the necessity for transparent healthcare practices and policies, advocating for reforms to improve accountability while involving consumers in fostering a culture of patient safety.

Article Abstract

Purpose: This study aimed to investigate healthcare consumers' interest in patient safety on social media using structural topic modeling (STM) and to identify changes in interest over time.

Methods: Analyzing 105,727 posts from Naver news comments, blogs, internet cafés, and Twitter between 2010 and 2022, this study deployed a Python script for data collection and preprocessing. STM analysis was conducted using R, with the documents' publication years serving as metadata to trace the evolution of discussions on patient safety.

Results: The analysis identified a total of 13 distinct topics, organized into three primary communities: (1) "Demand for systemic improvement of medical accidents," underscoring the need for legal and regulatory reform to enhance accountability; (2) "Efforts of the government and organizations for safety management," highlighting proactive risk mitigation strategies; and (3) "Medical accidents exposed in the media," reflecting widespread concerns over medical negligence and its repercussions. These findings indicate pervasive concerns regarding medical accountability and transparency among healthcare consumers.

Conclusion: The findings emphasize the importance of transparent healthcare policies and practices that openly address patient safety incidents. There is clear advocacy for policy reforms aimed at increasing the accountability and transparency of healthcare providers. Moreover, this study highlights the significance of educational and engagement initiatives involving healthcare consumers in fostering a culture of patient safety. Integrating consumer perspectives into patient safety strategies is crucial for developing a robust safety culture in healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.4040/jkan.23156DOI Listing

Publication Analysis

Top Keywords

patient safety
20
topic modeling
8
concerns medical
8
accountability transparency
8
transparency healthcare
8
safety
7
patient
6
healthcare
6
[structural topic
4
modeling analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!