Additive manufacturing (3D printing) technology aligns with the direction of precision and customization in future medicine, presenting a significant opportunity for innovative development in high-end medical devices. Currently, research and industrialization of 3D printed medical devices mainly focus on nondegradable implants and degradable implants. Primary areas including metallic orthopaedic implants, polyether-ether-ketone (PEEK) bone implants, and biodegradable implants have been developed for clinical and industrial application. Recent research achievements in these areas are reviewed, with a discussion on the additive manufacturing technologies and applications for customized implants. Challenges faced by different types of implants are analyzed from technological, application, and regulatory perspectives. Furthermore, prospects and suggestions for future development are outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12455/j.issn.1671-7104.230681 | DOI Listing |
3D Print Addit Manuf
December 2024
Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA.
Due to the high cost of each experimental run in additive manufacturing (AM), there has been a drive to develop simulations that can find the optimal processing parameters. The accuracy of these simulations is dependent on the accuracy of the material parameters recorded in literature. These reported parameters can vary widely resulting in differing simulation results.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, New York, USA.
Unlike many conventional manufacturing techniques, 3D Printing/Additive Manufacturing (3DP/AM) fabrication creates builds with unprecedented degrees of structural and geometrical complexities. However, uncertainties in 3DP/AM processes and material attributes could cause geometric and structural quality issues in resulting builds and products. Evaluating the sensitivity of process parameters and material properties for process optimization, quality assessment, and closed-loop control is crucial in practice.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou, China.
Cutting tools with orderly arranged diamond grits using additive manufacturing show better sharpness and longer service life than traditional diamond tools. A retractable needle jig with vacuum negative pressure was used to absorb and place grits in an orderly arranged manner. However, needle hole wear after a long service time could not promise complete grit adsorption forever.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.
This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Department of Thermodynamics, Mechanical Engineering and Energy, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia.
The article discusses the importance of optimizing process parameters in 3D printing to achieve better mechanical properties of printed parts. It emphasizes the material extrusion 3D printing technology and some of the most commonly used materials, acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PETG). Optimizable process parameters such as, print angle, outer layer number, extruder flow ratio, extrusion (nozzle) temperature, and layer thickness are examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!