Organic fluorescent materials with red/near-infrared (NIR) emission are highly promising for use in biotechnology due to their exceptional advantages. However, traditional red/NIR fluorophores often exhibit weak emission at high concentrations or in an aggregated state due to the aggregate-caused quenching effect, which severely limits their applicability in biological imaging. To address this challenge, we developed a series of cyanostyrene derivatives with aggregation-induced emission characteristics, including 2,3-Bis-(4-styryl-phenyl)-but-2-enedinitrile (DPB), 2,3-Bis-{4-[2-(4-methoxy- phenyl)-vinyl]-phenyl}-but-2-enedinitrile (DOB), 2,3-Bis-{4-[2-(4-diphenylamino- phenyl)-vinyl]-phenyl}-but-2-enedinitrile (DTB), and 2,3-Bis-[4-(2-{4-[phenyl- (4-triphenylvinyl-phenyl)-amino]-phenyl}-vinyl)- phenyl]-but-2-enedinitrile (DTTB). Notably, these compounds exhibited intense solid state fluorescence owing to AIE effect, especially DTTB shows NIR emission with high solid state quantum efficiency (712 nm, Φ=14.2 %). Then we prepared DTTB@PS-PEG NPs nanoparticles by encapsulating DTTB with the amphiphilic polymer polystyrene-polyethylene glycol (PS-PEG). Importantly, DTTB@PS-PEG NPs exhibited highly efficient NIR luminescence (Φ=28.7 %) and a large two-photon absorption cross-section (1900 GM) under 800 nm laser excitation. The bright two-photon fluorescence of DTTB@PS-PEG indicated that it can be a highly promising candidate for two-photon fluorescence probe. Therefore, this work provides valuable insights for the design of highly efficient and NIR-emitting two-photon fluorescent probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!