This study aimed to explore the molecular mechanism underlying the prognostic role of ancient ubiquitous protein 1 (AUP1) in head and neck squamous cell carcinoma (HNSCC) and its relationship with the tumor immune microenvironment. Various web resources were used to analyze the differential expression of AUP1 and its role in the HNSCC pathogenesis. A nomogram aimed at predicting 1-, 3-, and 5-year survival rates was developed based on the patient's clinicopathological characteristics and AUP1 expression pattern. Several algorithms and analytical tools were used to explore the correlation between AUP1 expression and sensitivity to immune checkpoint gene therapy by evaluating infiltrating immune cells in patients with HNSCC. Higher AUP1 mRNA and protein expression levels were observed in most tumors and HNSCC than in the normal tissues. High AUP1 expression was an independent predictive risk factor for the overall survival of patients as it was closely associated with the patients' T, M, clinical, and pathological stages and lymphovascular invasion in HNSCC. In conclusion, AUP1 is involved in the occurrence and progression of HNSCC, may be used as an independent prognostic factor in patients with HNSCC, and could serve as a potential intervention target to improve immunotherapy sensitivity in HNSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-024-01161-2 | DOI Listing |
Int J Oncol
November 2024
Gynecology and Obstetrics Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.
Cervical cancer is one of the reproductive malignancies threatening women's lives worldwide. In the present study, it was aimed to explore the role and mechanism of ancient ubiquitous protein 1 (AUP1) in cervical cancer. Through bioinformatics analysis, AUP1 expression in cervical cancer tissues and the correlation between AUP1 and the prognosis of patients were analyzed.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
September 2024
School of Information Engineering, Henan University of Science and Technology, Luoyang, China.
Objectives: To screen programmed cell death (PCD)-related genes in esophageal squamous cell carcinoma (ESCC) based on transcriptomic data and to explore its clinical value.
Methods: Differentially expressed PCD genes (DEPCDGs) were screened from ESCC transcriptome and clinical data in TCGA database. Univariate COX and LASSO COX were performed on prognostically DEPCDGs in ESCC to develop prognostic model.
Mol Biotechnol
June 2024
Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
This study aimed to explore the molecular mechanism underlying the prognostic role of ancient ubiquitous protein 1 (AUP1) in head and neck squamous cell carcinoma (HNSCC) and its relationship with the tumor immune microenvironment. Various web resources were used to analyze the differential expression of AUP1 and its role in the HNSCC pathogenesis. A nomogram aimed at predicting 1-, 3-, and 5-year survival rates was developed based on the patient's clinicopathological characteristics and AUP1 expression pattern.
View Article and Find Full Text PDFBMC Cancer
May 2024
Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China.
Background: Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC).
Methods: Data on gene expression and clinical details were obtained from publicly accessible databases.
Cells
February 2024
Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is to characterize further the ERAD machinery of NKCC2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!