Optical fiber sensor for water velocity measurement in rivers and channels.

Sci Rep

Department of Electrical, Electronic and Communication Engineering, Universidad Publica de Navarra, 31006, Pamplona, Spain.

Published: June 2024

In this work, optical fiber Bragg grating sensors were used to measure water velocity and examine how it was distributed in open channels. Several types of coatings were incorporated into the design of the sensors to examine their effects on the strain that the fibers experienced as a result of the water flow. Due to their low elastic coefficient, which reduced the hysteresis, the results indicated that the aluminum- and acrylate-coated fibers had the best performance. ANSYS-CFX V2020 R2 software was used to model the strain encountered by the fibers under various flow rates to assess the performance of the FBG sensors. The calculations and actual data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water velocity. The study illustrated the usability of the proposal in both scenarios by contrasting its application in rivers and channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166910PMC
http://dx.doi.org/10.1038/s41598-024-64202-5DOI Listing

Publication Analysis

Top Keywords

water velocity
12
optical fiber
8
rivers channels
8
fbg sensors
8
fiber sensor
4
water
4
sensor water
4
velocity measurement
4
measurement rivers
4
channels work
4

Similar Publications

Biokinetic soft-sensing using Thiothrix and Ca. Microthrix bacteria to calibrate secondary settling, aeration and NO emission digital twins.

Water Res

January 2025

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; SWING - Department of Built Environment, Oslo Metropolitan University, St Olavs plass 0130, Oslo, Norway. Electronic address:

Climate resilience in water resource recovery facilities (WRRFs) necessitates improved adaptation to shock-loading conditions and mitigating greenhouse gas emission. Data-driven learning methods are widely utilised in soft-sensors for decision support and process optimization due to their simplicity and high predictive accuracy. However, unlike for mechanistic models, transferring machine-learning-based insights across systems is largely infeasible, which limits communication and knowledge sharing.

View Article and Find Full Text PDF

Hypercapnic warm-up and re-warm-up-A novel experimental approach in swimming sprint.

PLoS One

January 2025

Department of Physiology and Biochemistry, Faculty of Physical Education and Sport Science, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland.

The purpose of this study was to determine the effective warm-up protocol using an added respiratory dead space (ARDS) 1200 ml volume mask to determine hypercapnic conditions, on the swimming velocity of the 50 m time trial front crawl. Eight male members of the university swimming team, aged 19-25, performed three different warm-up protocols: 1) standardized warm-up in water (WUCON); 2) hypercapnic warm-up in water (WUARDS); 3) hypercapnic a 20-minute transition phase on land, between warm-up in water and swimming test (RE-WUARDS). The three warm-up protocols were implemented in random order every 7th day.

View Article and Find Full Text PDF

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Interaction of cesium compounds with abundant inorganic compounds of atmosphere: Effect on cloud formation potential and settling.

J Hazard Mater

January 2025

Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.

Experiments were conducted in controlled laboratory conditions to determine the size-resolved CCN (Cloud Condensation Nuclei) activity of sub micrometer-sized aerosols containing nuclear fission products (CsI and CsOH) and abundant ambient inorganic aerosols ammonium sulphates ((NH)SO), ammonium chloride (NHCl), sodium nitrate (NaNO), and sodium chloride (NaCl). The presence of these atmospheric-relevant compounds internally mixed with fission product compounds has the potential to affect the capacity of ambient particulates of aerosols to absorb water and function as CCN. Once in the atmosphere, the dynamics of airborne radionuclides and subsequently their fate gets affected by dry and wet deposition processes.

View Article and Find Full Text PDF

Observations of Cherenkov-Like Radial Wake in Water Waves.

Adv Sci (Weinh)

January 2025

Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.

Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!