Effective representation of molecules is a crucial factor affecting the performance of artificial intelligence models. This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES (tree-based SMILES) with three code algorithms: TSSA (t-SMILES with shared atom), TSDY (t-SMILES with dummy atom but without ID) and TSID (t-SMILES with ID and dummy atom). It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph. Systematic evaluations using JTVAE, BRICS, MMPA, and Scaffold show the feasibility of constructing a multi-code molecular description system, where various descriptions complement each other, enhancing the overall performance. In addition, it can avoid overfitting and achieve higher novelty scores while maintaining reasonable similarity on labeled low-resource datasets, regardless of whether the model is original, data-augmented, or pre-trained then fine-tuned. Furthermore, it significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks. And it surpasses state-of-the-art fragment, graph and SMILES based approaches on ChEMBL, Zinc, and QM9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167009 | PMC |
http://dx.doi.org/10.1038/s41467-024-49388-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!