The New Zealand rabbit elastase-induced arterial aneurysm of the right common carotid artery remains a widely used model for assessing the effectiveness and safety of new neuroendovascular devices.1 This model offers a simple and reliable platform for pre-clinical investigations, crucial for comprehending the biological processes underlying aneurysm healing after endovascular treatment.2 Notably, the induced aneurysm exhibits morphological, hemodynamic, and histological characteristics similar to human intracranial aneurysms. The creation of the aneurysm is performed using open and endovascular techniques. Each step of the procedure requires a meticulous and controlled gesture to ensure reproducibility of the aneurysm and minimize animal misuse. In video 1 we present a step-by-step procedural guide for aneurysm creation and follow-up. We hope this resource will help in promoting this model and provide useful guidance for researchers in the field.neurintsurg;jnis-2024-021912v1/V1F1V1Video 1Surgical procedure of creating elastase-induced aneurysms in rabbits.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnis-2024-021912DOI Listing

Publication Analysis

Top Keywords

aneurysms rabbits
8
aneurysm
6
creating elastase
4
elastase aneurysms
4
rabbits video
4
video primer
4
primer zealand
4
zealand rabbit
4
rabbit elastase-induced
4
elastase-induced arterial
4

Similar Publications

Article Synopsis
  • The study investigates the effectiveness of two types of bioresorbable flow diverters made from a magnesium alloy: bare and PLLA-coated, comparing their bioresorption and biocompatibility in a rabbit vascular model.
  • Both types of MgBRFDs were mechanically tested and implanted into rabbits; results showed that while both had good biocompatibility, the PLLA-coated version exhibited better preservation of structure and lower inflammation over time.
  • The research concludes that the PLLA-coated MgBRFD is more clinically feasible for human use due to its slower bioresorption rate, allowing for improved performance during the healing process.
View Article and Find Full Text PDF

High Speed Angiography (HSA) at 1000 fps is a novel interventional-imaging technique that was previously used to visualize changes in vascular flow details before and after flow-diverter treatment of cerebral aneurysms in in-vitro 3D printed models. In this first pre-clinical work, we demonstrate the use of the HSA technique during flow-diverter treatment of in-vivo rabbit aneurysm models. An aneurysm was created in the right common carotid artery of each of two rabbits using previously published elastase aneurysm-creation methods.

View Article and Find Full Text PDF

An In vivo Pilot Study to Estimate the Swelling of the Aneurysm Wall Rabbit Model Generated with Pulsed Fluid Against the Aneurysm Wall.

Ann Biomed Eng

October 2024

Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, École Centrale de Lyon, 69130, Ecully, France.

Purpose: This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.

View Article and Find Full Text PDF

Induction of Controllable Vortical Flow in a Dual-Stenosis Aorta Model: A Replication of Disordered Eddies Flow in Aneurysms.

J Cardiovasc Transl Res

October 2024

Department of Biomedical Engineering, Michigan Technological University, 339 H-STEM Complex, 1400 Townsend Drive, Houghton, MI, 49931, USA.

This paper presents a two-stenosis aorta model mimicking vortical flow in vascular aneurysms. More specifically, we propose to virtually induce two adjacent stenoses in the abdominal aorta to develop various vortical flow zones post stenoses. Computational fluid dynamics (CFD) simulations were conducted for the virtual two-stenosis model based on physiological and anatomical data (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!