Microsyringe-based slug-flow microextraction for rapid and accurate determination of antibiotics in highly saline seawater.

Anal Chim Acta

School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China. Electronic address:

Published: July 2024

Background: Extensive use of antibiotics leads to widespread environmental pollution, endangering ecosystems, and human health. It is particularly concerning, posing global threats requiring urgent attention and action. In this regard, the shift to mass spectrometry in determining antibiotics is highly desirable. Significant progress has been made in analyzing and optimizing the sensitivity of high-salt samples. However, the persistence of cumbersome operational procedures presents a significant challenge to this shift. Thus, the persistence of complex operational procedures needs to be addressed.

Results: In this study, a rapid and direct method for determining antibiotics in highly saline environmental water samples using microsyringe-based slug-flow microextraction (MSFME)-droplet spray ionization (DSI) mass spectrometry (MS) has been described. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1200 ng mL, with low limits of detection of 0.19 ng mL, 0.17 ng mL, and 0.20 ng mL, respectively (Signal/Noise = 3). Additionally, spiked real seawater samples of all three antibiotics demonstrated satisfactory recoveries (95.1-107.5%) and precision (RSD≤8.8%). The MSFME-treated high-salt sample (3.5 wt%) showed a mass spectral response intensity 4-5 orders of magnitude higher than the untreated medium-salt sample (0.35 wt%). Furthermore, exploration of the applicability of MSFME showed that it is suitable not only for high-salinity (3.5 wt%) samples but also for salt-free or low-salt and hard water samples rich in calcium and magnesium ions.

Significance: Comparisons with other methods, complex laboratory setups for sample processing are now simplified to a single step, completing the entire process, including desalination and detection, MSFME-DSI-MS provides faster results in less than 1 min while maintaining sensitivity comparable to that of other detection methods. In conclusion, this advancement provides an exceptionally simplified protocol for the rapid, highly sensitive, and quantitative determination of antibiotics in environmental water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342790DOI Listing

Publication Analysis

Top Keywords

antibiotics highly
12
water samples
12
microsyringe-based slug-flow
8
slug-flow microextraction
8
determination antibiotics
8
highly saline
8
mass spectrometry
8
determining antibiotics
8
operational procedures
8
environmental water
8

Similar Publications

With the encroaching issue of water pollution, the use of involved chemicals to remove pollutants from water is not only a risk of chemical contamination, a potential hazard to the environment and human health but also requires significant investment in managing and improving the chemicals. Therefore, alginate as one of the nanomaterial-adorned polysaccharides-based entity that usually extract from brown algae has been used as novel and more efficient catalysts in the removal of a variety of aqueous pollutants from wastewater, including ionic metals and organic/inorganic pollutants by using the adsorption techniques. Adsorption is a technique used in water treatment where non-polar or particles less soluble in water are stuck to the surface of the adsorbent and therefore purifying it.

View Article and Find Full Text PDF

A wide range of pollutants, including heavy metals, endocrine-disrupting chemicals (EDCs), residual pesticides, and pharmaceuticals, are present in various water systems, many of which strongly drive the proliferation and dissemination of antimicrobial resistance genes (ARGs), heightening the antimicrobial resistance (AMR) crisis and creating a critical challenge for environmental and health management worldwide. This study addresses the impact of anthropogenic pollutants on AMR through an extensive analysis of ARGs and mobile genetic elements (MGEs) in urban wastewater, source water, and drinking water supplies in India. Results indicated that bla and bla were the dominant ARGs across all water systems, underscoring the prevalence and dominance of resistance against β-lactam antibiotics.

View Article and Find Full Text PDF

Antibiotic resistance gene levels within a highly urbanised estuary.

Mar Environ Res

January 2025

University of Technology Sydney, The School of Life Sciences, Ultimo, NSW, 2007, Australia. Electronic address:

Antibiotic resistant bacteria are increasingly being found in aquatic environments, representing a potential threat to public health. To examine the dynamics and potential sources of antibiotic-resistant genes (ARGs) in urbanised waterways, we performed a six-month temporal study at six locations within the Sydney Harbour estuary. These locations spanned a salinity gradient from seawater at the mouth of the harbour to freshwater at the more urbanised western sites.

View Article and Find Full Text PDF

Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.

View Article and Find Full Text PDF

Aim: It was the aim of this study to compare two different dry reverse micelle (RM) preparation methods for the incorporation of hydrophilic drugs into oral self-emulsifying drug delivery systems (SEDDS).

Methods: Cationic ethacridine lactate, anionic fluorescein sodium salt and the antibiotic peptide bacitracin were solubilized in RM containing sodium docusate, soy phosphatidylcholine and sorbitan monooleate in highly lipophilic oils such as squalane. In the dry addition (DA) method, drugs were directly added to empty RM in their powder form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!