The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2024.05.012 | DOI Listing |
Early sea urchin embryos contain cells called micromeres, which play an important role in the formation of three mesodermal cell types: skeletogenic, blastocoelar and pigment cells. When micromeres are removed, the embryo can replace the skeletogenic and blastocoelar cells via a process called 'transfating', whereby other cells in the embryo step in to take on new roles. However, the pigment cells do not reappear, and the reasons for this are unclear.
View Article and Find Full Text PDFDevelopment
December 2024
Department of Biology, Duke University, Durham, NC 27708, USA.
PLoS Biol
November 2024
Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France.
Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization.
View Article and Find Full Text PDFMol Biol Evol
November 2024
Department of Zoology, University of Cambridge, Cambridge, UK.
Genesis
August 2024
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!