Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification.

J Biomed Inform

Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Institute of Data Science, National University of Singapore, Singapore. Electronic address:

Published: August 2024

Objective: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement.

Method: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det).

Results: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach.

Conclusions: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2024.104673DOI Listing

Publication Analysis

Top Keywords

model explanations
24
xai methods
20
explanations
10
clinical domain
8
artificial intelligence
8
lesion areas
8
template-guided approach
8
three xai
8
template guidance
8
pneumothorax
7

Similar Publications

Efficacy of Segmentation for Hyperspectral Target Detection.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva blvd 1, Beer-Sheva 84105, Israel.

Algorithms for detecting point targets in hyperspectral imaging commonly employ the spectral inverse covariance matrix to whiten inherent image noise. Since data cubes often lack stationarity, segmentation appears to be an attractive preprocessing operation. Surprisingly, the literature reports both successful and unsuccessful segmentation cases, with no clear explanations for these divergent outcomes.

View Article and Find Full Text PDF

Accurate detection and tracking of dynamic objects are critical for enabling skill demonstration and effective skill generalization in robotic skill learning and application scenarios. To further improve the detection accuracy and tracking speed of the YOLOv8s model in dynamic object tracking tasks, this paper proposes a method to enhance both detection precision and speed based on YOLOv8s architecture. Specifically, a Focused Linear Attention mechanism is introduced into the YOLOv8s backbone network to enhance dynamic object detection accuracy, while the Ghost module is incorporated into the neck network to improve the model's tracking speed for dynamic objects.

View Article and Find Full Text PDF

The duration of the response to radiotherapy-related treatment is a critical prognostic indicator for patients with nasopharyngeal carcinoma (NPC). Persistent tumor status, including residual tumor presence and early recurrence, is associated with poorer survival outcomes. To address this, we developed a prediction model to identify patients at a high risk of persistent tumor status prior to initiating treatment.

View Article and Find Full Text PDF

Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) research often focuses on mortality rates or functional recovery, yet the critical need for long-term care among patients dependent on institutional or Respiratory Care Ward (RCW) support remains underexplored. This study aims to address this gap by employing machine learning techniques to develop and validate predictive models that analyze the prognosis of this patient population.

Method: Retrospective data from electronic medical records at Chi Mei Medical Center, encompassing 2020 TBI patients admitted to the ICU between January 2016 and December 2021, were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!