A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

pH-triggered polydopamine-decorated nanocellulose membranes for continuously selective separation of organic dyes. | LitMetric

pH-triggered polydopamine-decorated nanocellulose membranes for continuously selective separation of organic dyes.

Int J Biol Macromol

Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China. Electronic address:

Published: July 2024

Membrane separation technology has emerged as a powerful tool to separate organic dyes from industrial wastewater. However, continuously selective separation of organic dyes with similar molecular weight remains challenging. Herein, we presented a pH-triggered membrane composed of polydopamine-decorated tunicate-derived cellulose nanofibers (PDA@TCNFs) for selective separation of organic dyes. Such self-supporting membranes with nanoporous structure were fabricated by facile vacuum-assisted filtration of PDA@TCNF suspension. The incorporation of polydopamine not only enhanced the stability of the membranes, but also endowed membranes with excellent pH sensitivity, facilitating the continuously selective separation of organic dyes. These pH-triggered PDA@TCNF membranes could selectively separate Methyl Orange (MO) and Rhodamine B (RB) from the MO/RB mixed solution by switching the pH values. The continuously selective separation of the MO/RB mixed solution was demonstrated, where both MO and RB recovery ratios maintained at ∼99 % during 50 repeated cycles. This work provides a new strategy to develop a pH-triggered sustainable nanocellulose-based membrane for continuously selective separation of mixed dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133044DOI Listing

Publication Analysis

Top Keywords

selective separation
24
continuously selective
20
organic dyes
20
separation organic
16
mo/rb mixed
8
mixed solution
8
separation
7
selective
6
dyes
6
membranes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!