Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater.

Sci Total Environ

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.

Published: September 2024

High‑arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur‑iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high‑sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173776DOI Listing

Publication Analysis

Top Keywords

thioarsenate formation
16
thioarsenate
8
enrichment groundwater
8
iron minerals
8
aquifer exhibited
8
groundwater
6
formation
6
arsenic
5
coupled redox
4
redox cycling
4

Similar Publications

Thioarsenate sorbs to natural organic matter through ferric iron-bridged ternary complexation to a lower extent than arsenite.

J Hazard Mater

January 2025

Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany. Electronic address:

Understanding processes regulating thioarsenate (HAsSO; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated.

View Article and Find Full Text PDF

Long-Term Paddy Soil Development Buffers the Increase in Arsenic Methylation and Thiolation after Sulfate Fertilization.

J Agric Food Chem

November 2024

Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95440, Germany.

Sulfate fertilization has been proposed to limit arsenic (As) mobility in paddy soils and accumulation in rice grains. However, As and sulfur (S) have complex biogeochemical interactions. Besides the desired precipitation of sulfides that sorb or incorporate As, S can enhance As biotic methylation and abiotic thiolation.

View Article and Find Full Text PDF

The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds.

View Article and Find Full Text PDF

Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater.

Sci Total Environ

September 2024

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.

High‑arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate.

View Article and Find Full Text PDF

Dimethylmonothioarsinic acid (DMMTA), a pentavalent thio-arsenic derivative, has been found in bodily fluids and tissues including urine, liver, kidney homogenates, plasma, and red blood cells. Although DMMTA is a minor metabolite in humans and animals, its substantial toxicity raises concerns about potential carcinogenic effects. This toxicity could be attributed to arsenicals' ability to regulate cytochrome P450 1 A (CYP1A) enzymes, pivotal in procarcinogen activation or detoxification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!