There is increasing evidence that cancer progression is linked to tissue viscoelasticity, which challenges the commonly accepted notion that stiffness is the main mechanical hallmark of cancer. However, this new insight has not reached widespread clinical use, as most clinical trials focus on the application of tissue elasticity and stiffness in diagnostic, therapeutic, and surgical planning. Therefore, there is a need to advance the fundamental understanding of the effect of viscoelasticity on cancer progression, to develop novel mechanical biomarkers of clinical significance. Tissue viscoelasticity is largely determined by the extracellular matrix (ECM), which can be simulatedusing hydrogel-based platforms. Since the mechanical properties of hydrogels can be easily adjusted by changing parameters such as molecular weight and crosslinking type, they provide a platform to systematically study the relationship between ECM viscoelasticity and cancer progression. This review begins with an overview of cancer viscoelasticity, describing how tumor cells interact with biophysical signals in their environment, how they contribute to tumor viscoelasticity, and how this translates into cancer progression. Next, an overview of clinical trials focused on measuring biomechanical properties of tumors is presented, highlighting the biomechanical properties utilized for cancer diagnosis and monitoring. Finally, this review examines the use of biofabricated tumor models for studying the impact of ECM viscoelasticity on cancer behavior and progression and it explores potential avenues for future research on the production of more sophisticated and biomimetic tumor models, as well as their mechanical evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/ad5705 | DOI Listing |
Biophys J
December 2024
Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland. Electronic address:
Breast tumors are typically surrounded by extracellular matrix (ECM), which is heterogeneous, not just structurally but also mechanically. Conventional rheometry is inadequate for describing cell-size-level spatial differences in ECM mechanics that are evident at micrometer scales. Optical tweezers and passive microrheometry provide a microscale resolution for the purpose but are incapable of measuring ECM viscoelasticity (the liquid-like viscous and solid-like elastic characteristics) at stiffness levels as found in breast tumor biopsies.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
The transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes, such as cell migration, cell differentiation, tissue development, and cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic vs a monotonic relationship of the retrograde flow and cell traction force with substrate rigidity.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China.
Osteoarthritis (OA) is characterized by symptoms such as abnormal lubrication function of synovial fluid and heightened friction on the cartilage surface in its early stages, prior to evident cartilage damage. Current early intervention strategies employing lubricated hydrogels to shield cartilage from friction often overlook the significance of hydrogel-cartilage adhesion and enhancement of the cartilage extracellular matrix (ECM). Herein, we constructed a hydrogel based on dihydrazide-modified hyaluronic acid (HA) (AHA) and catechol-conjugated aldehyde-modified HA (CHA), which not only adheres to the cartilage surface as an effective lubricant but also improves the extracellular environment of chondrocytes in OA.
View Article and Find Full Text PDFArXiv
December 2024
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609 USA.
It is widely recognized that reciprocal interactions between cells and their microenvironment, via mechanical forces and biochemical signaling pathways, regulate cell behaviors during normal development, homeostasis and disease progression such as cancer. However, it is still not well understood how complex patterns of tissue growth emerge. Here, we propose a framework for the chemomechanical regulation of growth based on thermodynamics of continua and growth-elasticity to predict growth patterns.
View Article and Find Full Text PDFHealth Sci Rep
December 2024
Department of Medicine, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran.
Background And Aim: Breast cancer and normal breast tissue exhibit different degrees of stiffness, indicating distinct biomechanical properties. Study results reveal that breast cancer tissue is several times stiffer than normal breast tissue. These variations can serve as indicative factors for imaging purposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!