Background And Objective: Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method.
Methods: Ex vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force-displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force-displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson's ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test.
Results: The elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination.
Conclusions: This study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!