Antibody drugs targeting SARS-CoV-2: Time for a rethink?

Biomed Pharmacother

Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Published: July 2024

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.116900DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
12
anti-sars-cov-2 drugs
8
sars-cov-2
6
antibody drugs
4
drugs targeting
4
targeting sars-cov-2
4
sars-cov-2 time
4
time rethink?
4
rethink? coronavirus
4
coronavirus disease
4

Similar Publications

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

Aim Traditional Ayurvedic herbo-mineral medicines have proven their potential in managing COVID-19. Cell-based assays of the Svarnvir-IV tablet demonstrated the virucidal activity against SARS-CoV-2 and its therapeutic action, along with safety in cytotoxicity, has been proved. In the present study, in vivo, safety profile and compositional analysis of the Svarnvir-IV tablet were performed.

View Article and Find Full Text PDF

BackgroundEarly detection and characterisation of SARS-CoV-2 variants have been and continue to be essential for assessing their public health impact. In August 2023, Santé publique France implemented enhanced surveillance for BA.2.

View Article and Find Full Text PDF

Circular mRNA Vaccine against SARS-COV-2 Variants Enabled by Degradable Lipid Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.

The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions.

Mol Biotechnol

January 2025

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.

The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!