Few-shot medical image segmentation has achieved great progress in improving accuracy and efficiency of medical analysis in the biomedical imaging field. However, most existing methods cannot explore inter-class relations among base and novel medical classes to reason unseen novel classes. Moreover, the same kind of medical class has large intra-class variations brought by diverse appearances, shapes and scales, thus causing ambiguous visual characterization to degrade generalization performance of these existing methods on unseen novel classes. To address the above challenges, in this paper, we propose a Prototype correlation Matching and Class-relation Reasoning (i.e., PMCR) model. The proposed model can effectively mitigate false pixel correlation matches caused by large intra-class variations while reasoning inter-class relations among different medical classes. Specifically, in order to address false pixel correlation match brought by large intra-class variations, we propose a prototype correlation matching module to mine representative prototypes that can characterize diverse visual information of different appearances well. We aim to explore prototypelevel rather than pixel-level correlation matching between support and query features via optimal transport algorithm to tackle false matches caused by intra-class variations. Meanwhile, in order to explore inter-class relations, we design a class-relation reasoning module to segment unseen novel medical objects via reasoning inter-class relations between base and novel classes. Such inter-class relations can be well propagated to semantic encoding of local query features to improve few-shot segmentation performance. Quantitative comparisons illustrates the large performance improvement of our model over other baseline methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2024.3412420 | DOI Listing |
Neural Netw
January 2025
Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 138632, Singapore. Electronic address:
Accurate decoding of electroencephalogram (EEG) signals in the shortest possible time is essential for the realization of a high-performance brain-computer interface (BCI) system based on the steady-state visual evoked potential (SSVEP). However, the degradation of decoding performance of short-length EEG signals is often unavoidable due to the reduced information, which hinders the development of BCI systems in real-world applications. In this paper, we propose a relaxed matching knowledge distillation (RMKD) method to transfer both feature-level and logit-level knowledge in a relaxed manner to improve the decoding performance of short-length EEG signals.
View Article and Find Full Text PDFNeural Netw
January 2025
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China. Electronic address:
Graph neural networks (GNNs) have shown great promise in modeling graph-structured data, but the over-smoothing problem restricts their effectiveness in deep layers. Two key weaknesses of existing research on deep GNN models are: (1) ignoring the beneficial aspects of intra-class smoothing while focusing solely on reducing inter-class smoothing, and (2) inefficient computation of residual weights that neglect the influence of neighboring nodes' distributions. To address these weaknesses, we propose a novel Smoothing Deceleration (SD) strategy to reduce the smoothing speed rate of nodes as information propagates between layers, thereby mitigating over-smoothing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic Surgery and Traumatology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
Scapular morphological attributes show promise as prognostic indicators of retear following rotator cuff repair. Current evaluation techniques using single-slice magnetic-resonance imaging (MRI) are, however, prone to error, while more accurate computed tomography (CT)-based three-dimensional techniques, are limited by cost and radiation exposure. In this study we propose deep learning-based methods that enable automatic scapular morphological analysis from diagnostic MRI despite the anisotropic resolution and reduced field of view, compared to CT.
View Article and Find Full Text PDFFront Sociol
December 2024
Department of Labor Economics and Industrial Relations, Faculty of Economics, Marmara University, Istanbul, Türkiye.
Digital platforms are transforming the world of work. However, platforms operating in similar fields of activity encounter varying mechanisms of opposition, as a result of different degrees of professional institutionalization and their relations with the state. This study examines the diversified labor/capital struggle processes on platforms operating at different points of urban mobility in Istanbul and makes an evaluation between delivery and transportation platforms.
View Article and Find Full Text PDFJ Forensic Sci
January 2025
Dalian Everspry Sci & Tech Co., Ltd., Dalian, China.
As the court put forward higher requirements for quantitative evaluation and scientific standards of forensic evidence, how to objectively and scientifically express identification opinions has become a challenge for traditional forensic identification methods. Score-based likelihood ratios are mathematical methods for quantitative evaluation of forensic evidence. However, due to the subtle differences in inter-class barefootprints, there is no automatic barefootprints matching algorithm with high accuracy under large-scale dataset validation, and there are few studies related to deep learning barefootprint features for evidence evaluation in court.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!