Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid- and high-frequency ranges, but face challenges in low-frequency absorption due to limited control over polarization response mechanisms and ambiguous resonance behavior. In this study, we propose a novel approach to enhance absorption efficiency in aligned three-dimensional (3D) MXene/CNF (cellulose nanofibers) cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture. This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band, leading to a remarkable reflection loss value of - 47.9 dB in the low-frequency range. Furthermore, our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties. The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation, while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166627 | PMC |
http://dx.doi.org/10.1007/s40820-024-01437-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!