Reaction-Kinetic Modeling of Photorespiration Using Modelbase.

Methods Mol Biol

Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Published: June 2024

Plant science has become more and more complex. With the introduction of new experimental techniques and technologies, it is now possible to explore the fine details of plant metabolism. Besides steady-state measurements often applied in gas-exchange or metabolomic analyses, new approaches, e.g., based on C labeling, are now available to understand the changes in metabolic concentrations under fluctuating environmental conditions in the field or laboratory. To explore those transient phenomena of metabolite concentrations, kinetic models are a valuable tool. In this chapter, we describe ways to implement and build kinetic models of plant metabolism with the Python software package modelbase. As an example, we use a part of the photorespiratory pathway. Moreover, we show additional functionalities of modelbase that help to explore kinetic models and thus can reveal information about a biological system that is not easily accessible to experiments. In addition, we will point to extra information on the mathematical background of kinetic models to give an impetus for further self-study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3802-6_18DOI Listing

Publication Analysis

Top Keywords

kinetic models
16
plant metabolism
8
reaction-kinetic modeling
4
modeling photorespiration
4
photorespiration modelbase
4
modelbase plant
4
plant science
4
science complex
4
complex introduction
4
introduction experimental
4

Similar Publications

Recent single-cell experiments that measure copy numbers of over 40 proteins in individual cells at different time points [time-stamped snapshot (TSS) data] exhibit cell-to-cell variability. Because the same cells cannot be tracked over time, TSS data provide key information about the time-evolution of protein abundances that could yield mechanisms that underlie signaling kinetics. We recently developed a generalized method of moments (GMM) based approach that estimates parameters of mechanistic models using TSS data.

View Article and Find Full Text PDF

Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics.

View Article and Find Full Text PDF

Extracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.

View Article and Find Full Text PDF

The coronavirus main protease (MPro) plays a pivotal role in viral replication and is the target of several antivirals against SARS-CoV-2. In some species, CRCs of MPro enzymatic activity can exhibit biphasic behavior in which low ligand concentrations activate the enzyme whereas higher ones inhibit it. While this behavior has been attributed to ligand-induced dimerization, quantitative enzyme kinetics models have not been fit to it.

View Article and Find Full Text PDF

Background: Right ventricular restrictive physiology (RVRP) is a common occurrence in repaired tetralogy of Fallot (rTOF). The relationship of RVRP with biventricular blood flow components and kinetic energy (KE) from 4-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is unclear.

Objectives: The purpose of this study was to investigate the association of 4D flow CMR parameters with RVRP in rTOF patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!