In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00372DOI Listing

Publication Analysis

Top Keywords

protein-mimetic architectures
12
nucleic acid
12
peptide chemistry
8
nucleic acids
8
novel protein-mimetic
8
acid templates
8
nucleic
6
peptides
6
templating peptide
4
chemistry nucleic
4

Similar Publications

Owing to their synthetic accessibility and protein-mimetic features, peptides represent an attractive biomolecular building block for the fabrication of artificial biomimetic materials with emergent properties and functions. Here, we expand the peptide building block design space through unveiling the design, synthesis, and characterization of novel, multivalent peptide macrocycles (96mers), termed coiled coil peptide tiles (CCPTs). CCPTs comprise multiple orthogonal coiled coil peptide domains that are separated by flexible linkers.

View Article and Find Full Text PDF

Sequence-Sensitivity in Functional Synthetic Polymer Properties.

Angew Chem Int Ed Engl

January 2025

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Recently, a new class of synthetic methyl methacrylate-based random heteropolymers (MMA-based RHPs) has displayed protein-like properties. Their function appears to be insensitive to the precise sequence. Here, through atomistic molecular dynamics simulation, we show that there are universal protein-like features of MMA-based RHPs that are insensitive to the sequence, and mostly depend on the overall composition.

View Article and Find Full Text PDF

In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides.

View Article and Find Full Text PDF

Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms.

Acta Biomater

December 2022

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China. Electronic address:

Development of rapid and effective hemostatic materials has always been the focus of research in the healthcare field. Nanofibrous materials which recapitulate the delicate nano-topography feature of fibrin fibers produced during natural hemostatic process, offer large length-to-diameter ratio and surface area, tunable porous structure, and precise control in architecture, showing great potential for staunching bleeding. Here we present a comprehensive review of advances in nanofibrous hemostatic materials, focusing on the following three important parts: structural design, fabrication methods, and hemostatic mechanisms.

View Article and Find Full Text PDF

Although lots of methods have been developed for self-healing materials, it remains a formidable challenge to achieve a thermosetting material with water-insensitive and self-healing properties at room temperature. Nature always provides intelligent strategies for developing advanced materials with superior properties. Herein, a novel self-healable polyurea-urethane was rationally designed by combining mussel adhesive protein-mimetic structure and dynamic aromatic disulfide bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!