Tuning Na-Ion Diffusion in MXene/Graphene Oxide Heterostructures: An Ab Initio Molecular Dynamics Study.

Langmuir

Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.

Published: June 2024

The development of heterostructured anode materials provides an effective approach for enhancing the electrochemical performance of sodium-ion batteries (SIBs). In this work, ab initio molecular dynamics simulations and first-principles calculations are employed to investigate the Na-ion intercalation and diffusion in MXene/graphene oxide heterostructures. The influence of graphene oxidation on interlayer spacing, Na-ion diffusion kinetics, and transport mechanisms is examined at an atomic scale. It has been observed that oxygen functional groups can increase the interspacing between adjacent layers, thereby improving the initial embedding of Na ions. However, overoxidation causes an obstructive effect on the ionic conduction channels. An appropriate oxidation degree enables optimal Na-ion migration kinetics while retaining structural integrity. Our simulation results provide crucial insights into the rational design of high-performance MXene-based anodes for SIBs with excellent capacity and cycling stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01137DOI Listing

Publication Analysis

Top Keywords

na-ion diffusion
8
diffusion mxene/graphene
8
mxene/graphene oxide
8
oxide heterostructures
8
initio molecular
8
molecular dynamics
8
tuning na-ion
4
heterostructures initio
4
dynamics study
4
study development
4

Similar Publications

Dual-Substitution Strategy Utilizing Cation Chelation and Assembly Process to Realize Solid Solution Reaction in Layered Oxide Cathode for Na-Ion Batteries.

Small

December 2024

School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

NaNiMnO (NNM) is regarded as a promising cathode material for Na-ion batteries (NIBs), but suffers from irreversible phase transformations characterized by multiple voltage plateaus, resulting in poor cycle stability and inferior rate capability. To address these issues, the NaNiCuZnMnO (NNCZM) cathode material is synthesized by a cation chelation and reassembly process, which can promote a more uniform element distribution than that prepared by the solid-state method (S-NNCZM), resulting in better Na diffusion kinetics and rate capability. Replacing Ni with a small amount of Zn prevents the P2-O2 phase transformation, while replacing Ni with an appropriate amount of electrochemically active Cu eliminates Na-vacancy ordering and additionally contributes to capacity.

View Article and Find Full Text PDF

Li-ion transport in two-dimensional nanofluidic membranes.

Nano Converg

December 2024

Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea.

The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li/Mg selectivity, enhancing Li ion selectivity over Na ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties.

View Article and Find Full Text PDF
Article Synopsis
  • * A new triptycene-based microporous organic ladder polymer has been developed as an anode material, featuring redox-active quinone groups that enhance battery performance by preventing layer stacking and improving ion exposure.
  • * This innovative polymer design facilitates fast sodium ion diffusion and achieves a high reversible capacity of 316 mAh/g, demonstrating potential for efficient sodium ion storage in future battery applications.
View Article and Find Full Text PDF

Context: In recent years, rechargeable batteries have received considerable attention as a way to improve energy storage efficiency. Anodic (negative) electrodes based on Janus two-dimensional (2D) monolayers are among the most promising candidates. In this effort, the adsorption and diffusion of these Li, Na, and Mg ions on and through Janus 2D-TiSSe as anodic material was investigated by means of periodic DFT-D calculations.

View Article and Find Full Text PDF

Boron nitride nanoslits for water desalination via forward osmosis: A molecular dynamics study.

J Mol Graph Model

January 2025

Department of Mechanical and Aerospace Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Astana, Akmola, Kazakhstan.

The global shortage of freshwater resources has spurred significant interest among scientists in the development of cost-effective and highly efficient water desalination methods. The forward osmosis (FO) membrane has become well-known for its various advantages, such as its low energy usage, cost-effective performance, high efficiency in desalination, and minimal fouling. Herein, the desalination performance of an FO system containing a boron-nitride slit membrane (BNSM) was investigated using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!