Diabetes, a widespread chronic metabolic disease, is projected to affect 783 million people globally by 2045. Recent studies emphasize the neuroprotective potential of dipeptidyl peptidase 4 (DPP4i) inhibitors, pointing toward a promising avenue for intervention in addressing cognitive challenges associated with diabetes. Due to limited data on the effect of DPP4i on brain pathways involved in diabetes-related neurocognitive disorders, the decision was made to conduct this study to fill existing knowledge gaps on this topic. The primary aim of our study was to evaluate the potential of DPP4 inhibitors (DPP4i) in preventing cognitive decline in mice with type 2 diabetes (T2D), placing special emphasis on gaining insight into the complex molecular mechanisms underlying this action. We examined drug efficacy in modulating neurotrophic factors, calcium levels, and the expression of key genes (HIF1α, APP, Arc) crucial for neural plasticity. Conducting cognitive assessments with the hole board and passive avoidance tests, we discerned a remarkable influence of short-term gliptin usage on the limiting progress of cognitive dysfunction in diabetic mice. The administration of DPP4 inhibitors led to heightened neurotrophin levels, increased HIF1α in the prefrontal cortex, and a significant elevation in Arc mRNA levels. Our findings reveal that DPP4 inhibitors effectively limit the progression of diabetes-related cognitive disorders. This breakthrough discovery not only opens new research avenues but also constitutes a potential starting point for creating innovative strategies for the treatment of central nervous system disorders focused on improving cognitive abilities.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570159X22666240517094428DOI Listing

Publication Analysis

Top Keywords

dpp4 inhibitors
12
brain pathways
8
pathways involved
8
neurocognitive disorders
8
potential dipeptidyl
8
dipeptidyl peptidase
8
cognitive
6
inhibitors
5
restoring brain
4
involved diabetes-associated
4

Similar Publications

The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity.

View Article and Find Full Text PDF

Aim: To comprehensively evaluate the benefits and risks of glucagon-like peptide-1 receptor agonists (GLP-1RA), dipeptidyl peptidase 4 inhibitors (DPP4i), and sodium-glucose cotransporter 2 inhibitors (SGLT2i).

Materials And Methods: A systematic search of PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to November 2023 to identify randomized cardiovascular and kidney outcome trials that enrolled adults with type 2 diabetes, heart failure, or chronic kidney disease and compared DPP4i, GLP-1RAs, or SGLT2i to placebo. Twenty-one outcomes (e.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia, insulin resistance, and decreased insulin secretion. With its rising global prevalence, effective management strategies are critical to reducing morbidity and mortality. This systematic review compares the efficacy, safety, and long-term outcomes of four major pharmacological treatments for T2DM: sodium-glucose cotransporter-2 (SGLT2) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, metformin, and insulin.

View Article and Find Full Text PDF

Background: This study compared the risks of atherothrombotic major adverse cardiovascular events in patients with type 2 diabetes taking SGLT2 (sodium-glucose cotransporter 2) inhibitors to those taking DPP-4 (dipeptidyl peptidase-4) inhibitors.

Methods And Results: All adult patients (≥18 years of age) with type 2 diabetes and newly prescribed with SGLT2 inhibitors or DPP-4 inhibitors across all public hospitals in Hong Kong between January 2015 and December 2019 were included. Patients were propensity matched in a 1:1 ratio using a caliper distance of 0.

View Article and Find Full Text PDF

1,2,3-triazole-based ring connected with pyridazine, triazine, methyl pyrazole, diphenyl pyrazole, and pthalimide moieties through propylene linker have been synthesized for antidiabetic evaluation via click chemistry. The antidiabetic evaluations have been done by molecular docking studies and in- vitro tests and against the DPP-4 enzyme. The molecular docking studies have revealed that compounds 22, 23, 29, and 30 showed hydrogen bond with the DPP-4 enzyme while in vitro tests has revealed the compound 30 has (IC50 values 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!